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Abstract. Structural health monitoring (SHM) using IoT sensor de-
vices plays a crucial role in the preservation of civil structures. SHM aims
at performing an accurate damage diagnosis of a structure, that consists
of identifying, localizing, and quantify the condition of any significant
damage, to keep track of the relevant structural integrity. deep learn-
ing (DL) architectures have been progressively introduced to enhance
vibration-based SHM analyses: supervised DL approaches are integrated
into SHM systems because they can provide very detailed information
about the nature of damage compared to unsupervised DL approaches.
The main drawback of supervised approach is the need for human in-
tervention to appropriately label data describing the nature of damage,
considering that in the SHM context, providing labeled data requires
advanced expertise and a lot of time. To overcome this limitation, a key
solution is a digital twin relying on physics-based numerical models to
reproduce the structural response in terms of the vibration recordings
provided by the sensor devices during a specific events to be monitored.
This work presents a comprehensive methodology to carry out the dam-
age localization task by exploiting a convolutional neural network (CNN)
and parametric model order reduction (MOR) techniques to reduce the
computational burden associated with the construction of the dataset on
which the CNN is trained. Experimental results related to a pilot appli-
cation involving a sample structure, show the potential of the proposed
solution and the reusability of the trained system in presence of different
loading scenarios.

Keywords: Convolutional Neural Network - IoT - Digital Twin - Struc-
tural Health Monitoring - Damage Localization.
1 Introduction and background

Civil structures, whether buildings, bridges, oil and gas pipelines, are subject
to several external actions and sources of degradation that might compromise
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their structural performance. This can happen due to a faulty construction pro-
cess, lack of quality control, or unexpected loadings, environmental actions and
natural hazards such as earthquakes. In order to keep track of the structural
health, and to quickly react before a major damage occurs, autonomus damage
identification systems provide a suitable framework to perform systematic di-
agnostic and prognostic activities, ultimately allowing for timely maintenance
actions with a direct impact on reducing the operating costs.

In the last years, increasingly sophisticated structural health monitoring
(SHM) systems have been developed to keep under control the structural health
state, through the implementation of different levels of damage identification,
such as detection, localization and quantification, possibly with a quantification
of the impact of relevant environmental effects, see e.g. [I2]. A SHM system is
usually comprised by different components: a sensor network deployed to collect
vibration and environmental data; a data transmission unit; a storage unit; a
SHM data analysis software. The outcome of the monitoring procedure is then
displayed to the user via reports or web platforms.

Recently, many vibration-based SHM strategies relying upon deep learn-
ing (DL) architectures have been proposed to address different SHM tasks, see
e.g. [345], by exploiting their capability to automatize the selection and ex-
traction of damage-sensitive features, that traditional algorithms would fail to
detect [6]. Focusing on these data-driven strategies, the SHM problem can be
addressed either in a supervised or an unsupervised way. The former exploits
labeled input-output pairs, with vibration structural response data being the
inputs and the values of the sought damage parameters being the corresponding
outputs. On the other hand, unsupervised algorithms are often adopted to dis-
cover damage-sensitive patterns in the input data, without the need of providing
a corresponding output label. The implementation of an unsupervised damage
detection strategy usually involves two phases: (i) the identification of stable
key parameters reflecting the undamaged structural health state by means of
appropriate behavioral model of the structure; (i7) the detection of a persistent
variation in such parameters over time, by relying upon the underlying idea that
when the structure suffers damage, a deviation from the reference condition can
be observed in terms of vibration response [7].

Since unsupervised learning methods can only be effective in detecting the
presence of a structural damage, without allowing to obtain clear and explicit
information about location, severity and type of damage, a supervised learning
strategy is adopted in this paper. However, dealing with civil structures, exper-
imental labeled data referred to the possible damage states can not be obtained
in practice. To overcome this limitation, a key solution is provided by the digital
twin (DT) paradigm, and in particular by the physics-based numerical models
comprising the DT of the structure to be monitored. Indeed, the latter enable
to systematically simulate the vibration recordings provided by IoT devices for
specific damage and operational conditions [§].

A DT is built upon three components: a physical asset in the real-world
(physical twin), a digital model of the structure in a computerized environment,



SHM on digital twins using convolutional neural networks 3

and the integration of data and information that tie the physical entities and
their virtual representation together [9]. For a successful DT implementation, it is
crucial to properly identify all the involved physical entities and processes in the
real-world and their digital counterparts, as well as the interconnection between
them, in terms of the exchanged data. The process of implementing a DT is called
digital transformation, and in this work it is (partially) achieved by means of a
physics-based numerical model of the monitored structure relying on the finite
element (FE) method and of a DL-based model for damage identification.

As the number of involved degrees of freedom increases, the computational
cost, associated to the solution of a FE model grows, and the assembly of syn-
thetic datasets accounting for different input parameters easily becomes pro-
hibitive [I0]. To this aim, a reduced-order modeling strategy for parametrized
systems is adopted by relying on the reduced basis method [II] in order to set a
cheaper, yet accurate, reduced-order model (ROM), ultimately allowing to speed
up data generation phase required to train the DL model in a supervised fashion.

This work deepens and extends a former research activity presented in [12],
by proposing a comprehensive approach to solve the damage localization task.
The obtained results testify the capabilities of the proposed approach to per-
form real-time damage localization, as well as the effectiveness of such diagnostic
framework against operational variability and measurement noise. In addition,
the beneficial effect of implementing a hyperparameter optimization strategy is
also considered, as reported to yield a fair improvement in the damage localiza-
tion performance.

The reminder of the paper organized as follows: the methods for developing
the digital twin, and involving the generation of synthetic datasets and the use
of DL-based architectures for SHM purposes are described in Section [2} the
application of the methodology to the case study of a two-story shear building is
discussed in Section [d} conclusions and future developments are finally reported
in Section

2 Methodology and methods

The proposed methodology is described in the following. Specifically: in Sec-
tion[2:1] we detail the numerical models comprising the DT, adopted to populate
the synthetic dataset; in Section [2:2] we frame the damage localization task as
a classification problem handling a set of predefined damage scenarios by means
of a convolutional neural network (CNN).

2.1 Digital twin design

Physics-based numerical model The virtual representation of the structure
to be monitored is obtained by relying upon a high-fidelity full-order model
(FOM), describing its dynamic response under the applied loadings, according
to the Newton’s second law of motion and under the assumption of a linearized
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kinematic. By modeling the structure as a linear-elastic continuum and by space-
discretizing the governing equation by means of a FE mesh, its dynamic response
is described by the following semi-discretized form of the elasto-dynamic prob-
lem:

Md(t) + Cd(t) + K(A,)d(t) = f(t,m) , t € (0,T)
d(0) =do (1)
d(0) =do ,

where: t € (0,T) denotes time; d(t),d(t),d € R# are the vectors of nodal
displacements, velocities and accelerations, respectively; 4 is the number of de-
grees of freedom (dofs); M € R#*# is the mass matrix; C € R#* is the
damping matrix, assembled according to the Rayleigh’s model; K(A, 1) €#*#
is the stiffness matrix, with A and [ the parameters providing its dependence
on damage as specified below; f(t,) € R# is the vector of nodal forces asso-
ciated to the operational conditions ruled by means of N, parameters through
the vector n € RVn; dg € R# and dy € R are the initial conditions at ¢t = 0,
in terms of nodal displacements and velocities, respectively. The relevant para-
metric input space is assumed to display a uniform probability distribution for
each parameter.

As typically done in simulation-based SHM, damage is modeled as a selective
degradation of the material stiffness of amplitude [ € R, taking place within the
pre-designated region labeled by A € {Ao,...,An,}, with Ay identifying the
damage-free baseline and all the others being referred to specific damage sce-
narios undergone by the structure among a set of predefined Ny damage states.
These latter are defined on the basis of structural response, loading conditions,
and aging processes of materials. In this work, [ is not considered part of the
label, as only the localization of damage is addressed.

Dataset generation The generation of the training instances is carried out by
advancing in time the solution of the physics-based model of the structure using
the Newmark time integration scheme. Either nodal displacements or accelera-
tions recordings 8; = 8,(A,1,n) € RY in (0,7T), each including L measurements,
are collected at N, predefined locations where sensing devices are supposed to
be installed, with ¢ = 1,..., Ns. The measurements are acquired with a sam-
pling frequency £ and for an observation time window (0,7, short enough to
assume constant operational and damage conditions, such that T'= (L — 1)/£.
The training set D € REXNsXNo ig then built from the assembly of N, instances,
each one shaped as a multivariate time series comprised by N, arrays of L mea-
surements and obtained by sampling the parametric input space of the numerical
model via latin hypercube rule.

In order to obtain a high quality dataset D to train the DL model, the number
of required instances may be extremely high, thus making the computational cost
associated to the data generation process potentially very high. To this aim, the
FOM is replaced by a cheaper, yet accurate, projection-based ROM by relying on
the reduced basis method [I1], following the same strategy adopted in [134UI0].
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By relying upon the proper orthogonal decomposition (POD)-Galerkin ap-
proach, the solution to Problem is approximated, in terms of displacements,
as d(t,A,l,m) =~ Wdg(t, A,l,n), which is a linear combination of #r < M
basis functions w, € R#, r = 1,..., M, gathered in the projection matrix
W = [wy,...,wg] € R#*r with dg(t,A,l,n) € R¥" being the vector of
unknown POD-coeflicients

By enforcing the orthogonality between the residual and the subspace spanned
by the first #r POD-modes through a Galerkin projection, the following . r-
dimensional dynamical system is obtained:

Mpd(t) + Crd(t) + Kr(A, 1)dg(t) = fr(t,n) , t € (0,T)
dz(0) = WTd, (2)
dr(0)=WTd, ,

Here, the reduced arrays play the same role of their HF counterparts, yet with
dimension ruled by . instead of ., according to:

Mr=W' MW , CRr=W ' CW , Kg=W'KW , fr=W'f. (3)

The approximated solution is then recovered by back-projecting the ROM so-
lution, via d(t) ~ Wdg(t), or d(t) ~ Wdg(t) depending on the handled mea-
surements.

The projection matrix W is obtained by performing a singular value de-
composition of a snapshot matrix S = [dy,...,ds] € R#*S  assembled from
& snapshots of the FOM, namely solutions in terms of time histories of nodal
displacements, obtained for different values of the parameters, as

S=PxZ", (4)
where: P = [py,...,p.x] € R** is an orthogonal matrix, whose columns are
the left singular vectors of S; X € R#*¢ is a pseudo-diagonal matrix collecting
the singular values of S, arranged so that oy > 09 > -+ > 04 > 0, ® =
min(S, M) being the rank of S; Z = [z1,...,2zs5] € R¥*S is an orthogonal
matrix, whose columns are the right singular vectors of S.

The ROM order R is set by adopting a standard energy-content criterion
by prescribing a tolerance e on the fraction of energy content to be disregarded
in the approximation, according to:

Zfﬁ1(0m)2

S (Om)?

that is the energy retained by the last # — # r POD-modes is equal or smaller
than €.

>1—¢, (5)
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2.2 Deep learning for the damage localization

In this paper, we propose the use of one-dimensional (1D) CNNs to solve the
damage localization task, framed as a multiclass classification problem. A clas-
sification task involves the prediction of an output class label based on a given
input. In this case, the output labels to be predicted identify a set of predefined
damage scenarios, each referring to a different damage location.

Originally developed within the computer vision community, convolutional
layers have quickly become a first choice to solve several problems, outperform-
ing alternative methods [I4JT5]. They feature good relational inductive biases
such as the locality and translational equivariance (parameter sharing) of convo-
lutional kernels, which prove highly effective to analyze multivariate time series
while improving the relevant computational efficiency. In a convolutional layer,
the kernel filters feature a charcteristic size controlling the width of the local
receptive field on its input. Each convolutional layer simultaneously applies mul-
tiple kernel filters throughout its input, resulting in multiple activation maps,
called feature maps, each one providing the location and strength of the relevant
convolutional kernel in the input.

In a deep learning framework, a multi-label classification task can be ad-
dressed by prescribing number of computational neurons in the last layer of the
adopted neural network equal to the number of possible target labels. The result-
ing architecture is typically trained to solve the underlying classification task by
minimizing the categorical cross-entropy between the predicted and target label
classes:

Ng
H(b,b) = - "b; logb; , (6)
j=0
where b = {bo,...,by,} € B¢ and b= {307 .. 7ENd}T € RMe are two vectors

gathering the Boolean indexes b;, whose value is 1 if the target class for the
current instance is j and 0 otherwise, and the confidence levels Bj by which the
current instance is assigned to the j-th damage class, respectively.

To evaluate the performance of the adopted DL model against the considered
multi-class classification problem, the accuracy, precision, and recall indicators
are used, as follows:

R B TP + TN . -
CUraY = TP TN | FP | FN
TP
Precision = m 3 (8)
TP
11 = — .
Reca TP . PN 9)

Herein, TP denotes the amount of true positives, FP denotes the amount of
false positives, TN denotes the amount of true ngatives, FN the amount of false
negatives.
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3 Case study

The damage location capabilities of the proposed methodology are assessed with
reference to the virtual health monitoring of the building reported in Fig.
Within a digital twin perspective, this physical asset is equipped with a net-
work of sensors, for instance using commercial IoT devices as the one reported
in Fig. [TB] This latter is a mono-axial wireless device, useful to acquire displace-
ment measurements with an accuracy of 0.01 mnﬂ A crucial aspect to take into
account in the practice is the synchronization between IoT devices, which is a
critical requirement for system operation. This latter is not a zero-cost process
and different protocols can be adopted to meet the prescribed requirements,
depending on the system type [16].

(b)

Fig.1: Pilot example: (a) physical twin to be monitored; (b) exemplary IoT
device suitable for dynamic monitoring.

In the following, the corresponding digital twin is developed in order to suitably
perform real-time damage detection and localization under the action of seismic
loads. To provide a faithful virtual description of the considered framework, the
digital transformation process is carried out by means of a DT comprised by
three components: (i) a physics-based model of the structure to be monitored,
either the FOM governed by Problem or the corresponding reduced-order
representation described by Problem ; (1) the generation of site-specific ac-
celerograms, compatible with pseudo-real seismic loads and exploited to force
the structural model; (iii) the extraction of relevant dofs recordings, in terms
of multi-variate time series to mimic the deployed monitoring system, and the
contamination of these signals by adding an independent, identically distributed
Gaussian noise to allow for measurement noise.

The building to be monitored is modeled as a two-dimensional frame, see
Fig.[2] adopting a plane stress formulation with an out of plane thickness of 0.1 m.

! Deck, Dynamic Displacement Sensor. Move Srl, Ttaly. https://www.movesolutions.
it/deck/.
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The structure is assumed to be made of concrete, with mechanical properties:
Young’s modulus E = 30 GPa, Poisson’s ratio v = 0.2, density p = 2500 kg/mg.

0.6m 0.9m
. -‘ 1.0m 40m -‘

Og(t)

40m 1.0m

0.6m T

1.0m

39m

0.9m T 0.3m
1.0m

Oa(t)

49m
4.5m

06m] lﬂz

L 40m '1.0m'|_' 50m ’_
0.3m 0.3m 0.3m

Fig.2: Physics-based digital twin of the monitored structure, with details
of the loading conditions and synthetic recordings related to displacements
01(t),...,06(t) and target damage locations associated to Ay, ..., Asg.

The structure is excited by seismic loads simulated by means of ground motion
prediction equations adapted from [I7/I8] and allowing to generate spectrum-
compatible accelerograms as a function of: local magnitude @ € [4.6,5.3], epi-
central distance R € [80,100] km, and site geology; with the previous notation
used to specify the ranges in which @ and R can take value, implicitly denoting
that a uniform probability distribution is adopted to describe them, while having
considered a rocky condition as site geology.

Structural displacement time histories §; = 8;(4,l,n) € RL, with i =
1,..., N, are reocorded in (0,7") from N, = 6 dofs arranged as depicted in
Fig. [2 Recordings are provided for a duration (7' = 70 s) with an acquisition
frequency of £ = 25 Hz, thus consisting of L = 1751 measurements each. The
FOM in Eq. is obtained from a FE discretization using linear tetrahedral
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elements and resulting in # = 4326 dofs. The damping matrix is assembled ac-
cording to the Rayleigh’s model to account for a 5% damping ratio on the first
four structural modes. The stiffness matrix K(A,1) is parameterized to account
for Ny = 9 damage scenarios, simulated by reducing the material stiffness within
the corresponding subdomain labeled by A € {Ay, ..., Ay, } and highlighted in
dark grey in Fig. 2] with A identifying the undamaged case and all the others
being referred to specific damage state undergone by the structure, as described
in Tab. [1} The damage level I € [5%,25%)], representing the amplitude of the
stiffness degradation is held constant within the time instance (0, 7).

Table 1: Considered damage scenarios.

Class label Damage Location
Ao Undamaged condition
Ay Ground floor — left
Ag Ground floor — mid
As Ground floor — right
Ay First floor — left
As First floor — mid
Ag First floor — right
Ar Roof — left
Ag Roof — mid

The projection basis W ruling the ROM in Eq. is instead computed from
a snapshot matrix S comprising & = 630, 360 snapshots, obtained through 360
evaluations of the FOM for different values of the input parameters sampled via
latin hypercube rule. By prescribing a tolerance ¢ = 10~4, the order of the ROM
is set to My = 31, in place of the original # = 4326 dofs. The population of the
dataset D € REXNsXNo ig carried out by systematically evaluating the ROM for
N, = 9999 instances at varying input parameters values.

In this work, the signals are corrupted by assuming an additive Gaussian
noise uncorrelated in time, to represent measurement noise and those environ-
mental and ambient components potentially affecting the structural response,
such as traffic, temperature, humidity, rain, wind [19]. As typically done in sig-
nal processing, the amount of meaningful information carried by a signal with
respect to the amount of noise components is measured by adopting a signal-to-
noise ratio (SNR). The SNR of a generic signal % is defined as the ratio between
the power Psignal of the signal itself over the power Ppoise of the relevant noise
components 8%, in logarithmic decibel scale as follows:

Psi na ]E 53 2
SNR = 10log;, <Pgl> = 10log, (M) , (10)
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where E[ - | denotes the expectation operator. A SNR higher than 0 dB denotes
more information than noise, while a ratio equal to infinity indicates the ab-
sence of noisy components. In this work, an independent, identically distributed
Gaussian noise, yielding a SNR = 10 dB is adopted to corrupt both the training
and testing data. An exemplary d;(t) displacement time history is reported in
Fig. [Bal a as obtained from a FOM simulation for a sample seismic event; in
Fig.[3D} is reported an instance of the noise components mentioned above, while
resulting noisy recordings is reported Fig. Before training the DL model, the
data are preprocessed sensor-by-senor by standardizing all the data, so that the
entire amount of data gathered bu the same sensor are normalized to feature
zero mean and unit variance. Moreover, the hold-out method is used to split
dataset D into training sets and test sets, respectively amounting to 90% and
10% of the data, while the validation set is obtained by taking 20% of the data
in the training set.

3 5
e :

Eo il | E o e
° I ‘|| o

_5 5
0 35 70 ) 35 7
t [sec] t [sec]
(a) (b)
5

6 [mm]
o
———

w ﬂ

|
hl ‘WMWWW

t [sec]
(c)

Fig.3: Exemplary 6;(¢) displacement time histories: (a) instance of recorded
signal, obtained from a FOM simulation for a sample seismic event; (b) sample
of independent, identically distributed Gaussian noise affecting the sensor; (c)
resulting noisy recordings. Extracted from [12].
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4 Experiments and results

The overall methodology is developed on Google Colab [20], a free platform
based on the open-source Jupyter project and featuring an NVIDIA Tesla K80
GPU card. In Fig. [ is illustrated a high level flowchart of the methodology.
Both the adopted dataset and code are publicly released and made available

at [21].

Preprocessing

v

Preprocessed
Dataset
Hold out split
Training set Test set
! l
/+\ v Y
Add noise Q Add noise Add noise
Noisy Noisy Noisy
training set training set test set
[Nmse robusteness [ Model training ] [ N ]

testing J‘
—_— v

4@ Convolutional classifier

Fig. 4: High level workflow of experiments.

In the following, we detail the adopted CNN, which is designed to automat-
ically and adaptively learn feature hierarchies through backpropagation, using
multiple building blocks such as convolution layers, pooling layers, and fully con-
nected layers. Then, an analysis of the performance of the DL model is presented,
also considering the beneficial effect of exploiting a hyperparameter optimization
strategy for DL models. Tab. [2] summarizes the numerosity of the target classes
for the training and test sets.
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Table 2: Classes numerosity in the training and test sets.

Damage class Training set Test set
Ao 994 117
Ay 1003 108
Ag 1008 103
Az 998 113
Ay 992 119
As 1001 110
Ag 998 113
Az 1005 106
Ag 1001 110

4.1 Damage localization via CNN

The architecture adopted to address the damage localization task, along with
its relevant hyperparameters are summarised in Tab. [3} specifically, it is a con-
volutional model made of 4 blocks. The first three deal with feature extraction,
whereas the last one performs the classification task. Each of the first three blocks
consists of a 1D convolutional layer, a 1D max pooling layer, and a dropout layer.
The output features are then reshaped through a flatten layer and run through
the classifier block, which is composed of two dense layers and a dropout one.

Table 3: Adopted CNN architecture and selected hyperparameters.

Layer type Hyperparameter Output shape # parameters
Input - [ 1751, 6 | 0
Conv-1D kernels=6, kernel size=32 [ 1751, 6 | 1158

MaxPool-1D pooling size=8 [ 219, 6] 0
Dropout rate=0.15 [ 219, 6] 0
Conv-1D kernels=32, kernel size=20 [ 219, 32 ] 3872

MaxPool-1D pooling size=6 [37,16 ] 0
Dropout rate=0.15 [ 37,16 ] 0
Conv-1D kernels=16, kernel size=12 | 37, 16 | 6160

MaxPool-1D pooling size=4 [ 10, 16 ] 0
Dropout rate=0.15 [ 10, 16 ] 0
Flatten - [ 160 ] 0

Dense units=64 [ 64 ] 10304
Dropout rate=0.15 [ 10, 16 ] 0
Dense (output) units=9 [9] 585

Adopting the Xavier’s weight initialization, the loss function is minimized
using the Adam algorithm, a first-order stochastic gradient descent optimizer,
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for a maximum of 200 allowed epochs. To ensure that the CNN does not learn
the training dataset, but a possible model behind it, an early-stopping strategy is
used to interrupt the learning process, whenever overfitting shows up. Whenever
the loss function value computed on the validation set does not decrease for 10
epochs in a row, this latter terminates the CNN training before reaching the
number of allowed epochs.

The evolution of the loss function and of the accuracy metric over the training
and validation sets, obtained while training the classifier, is reported in Fig
and Fig respectively. The training process ends after 121 epochs due to
the early stopping condition, after which the value of the tunable parameters
yielding the best perfomance in terms of loss function are restored. From both
graphs, it is clear that most of the gains deriving from tuning the CNN param-
eters are attained during the first portion of the training. The slightly irregular
trend is due to the presence of dropout layers and to the stochastic nature of
the minimization algorithm, for which different values of loss and classification
accuracy are obtained on different mini-batches. After completing the training,
the CNN achieves a global accuracy of 83%. The relevant results are gathered
in the confusion matrix of Fig. [} and in Tab. [l which reports the precision
and recall values class by class. We can observe that the lowest values of the
assessment metrics are obtained for labels A; , Ay and As, suggesting that in
some scenarios it may not be easy to distinguish the presence of damage on the
ground floor with the undamaged state of the structure. Regarding the upper
floor damage, experimental results indicate that the convolutional architecture
is able to localize it with a high accuracy level.

1.0
R Training loss

08 AL AN 447 2.0 Validation loss
3 0.6 1.5
g 4
§ S
£04 1.0

0.2 Training acc

Validation acc 0.5 A A Al
0.0 0 20 40 60 80 100 120 0 20 40 60 80 100 120
Epochs Epochs
(a) (b)

Fig. 5: Classifier training: loss function (a) and accuracy metric (b) evolution on
the training and validation sets. Extracted from [12].
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Fig. 6: Confusion matrix on test set. Extracted from [12].

Table 4: Damage localization Precision and Recall by class on test set.

Damage class Precision Recall
Ao .56 .59
Ay .54 .61
Ag .95 .88
As .61 .71
Ay .94 .92
As .99 97
Ag 91 .78
Az 1.0 .98
Ag 1.0 1.0

4.2 Noise tolerance evaluation

Since the amplitude of ambient-induced vibrations is often not known a priori
as it can be due to a multitude of causes, in the following the performance of
the CNN model are assessed considering multiple test sets featuring a different
noise level; this is useful to provide some insights on the tolerance of the trained
model against noise. Overall, the model is evaluated on 13 different test sets, each
collecting recordings that feature a different SNR value between 1 dB and 25 dB.
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The result of this analysis is reported in Fig. [7} which shows the performance
of the CNN in terms of classification accuracy while varying the value of SNR.
From this latter, it can be observed that the convolutional model is still able
to detect damage-sensitive patterns, even when the recordings are contaminated
with a very high level of noise. Specifically, when considering test sets featuring
a SNR value higher than that characterizing the training data (equal to 10 dB),
an improvement in the CNN performance is observed; on the other hand, when
values of SNR lower than 10 DB are adopted, the CNN performance gets worse,
however the attained classification accuracy attests on values largely above that
one corresponding to the random guess, and still fairly remarkable for SNR
values above than 5 dB.

1.0

0.8 e

0.2

0.0

0 5 10 15 20 25
SNR[dB]

Fig. 7: Model accuracy on test set varying the EC values. Extracted from [12].

4.3 Random search algorithm for hyperparameter optimization

The design of deep neural network architectures requires to choose several pa-
rameters that are not learned during the training process but need to be selected
by the user. These are the so called hyperparameters, which includes the net-
work topology, the width/depth of each layer and the training options controlling
the optimization algorithm. The performance of DL architectures critically de-
pends on the specific choice of hyperparameters and, often, finding an optimal
combination of them can make the difference between good and bad models.
Therefore, to improve the performance of a DL model, a hyperparameter tuning
can be carried out to find a set of optimal hyperparameters, for instance see [22].
When such a hyperparameter tuning is carried out via random search, several
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feasible hyperparameters configurations are iteratively instantiated to train the
corresponding DL model, then the results obtained by means of each trained
model are compared to determine the best set of parameters [23].

Since the DL model described in the previous section and detailed in Tab. [3is
defined through a simple trial-and-error heuristic, a random search optimization
algorithm is here adopted to fine tune its relevant hyperprameters.

Table 5: Hyperparameter optimization: original and optimal values.

Name Old value Optimal value Suitable range
Batch 128 60 [60; 128]
Drop 15 165 [11; .17]
Kern-1 32 32 [25;27], [31;32], [40;48]
Kern-2 20 16 [15; 30]
Kern-3 16 5 [25; 32], [4; 13|
Pool-1 8 11 [7; 18]
POol-2 6 5 [5; 11]
Pool-3 4 3 [2; 8]

fe 64 92 [32; 128]

Acc .83 .85

Fig. shows the iterations of the random search optimization algorithm
through a parallel coordinates chart; at each iteration the relevant hyperparam-
eters are sampled in the corresponding ranges reported in the same figure, with
each parameter described by a uniform probability distribution. Overall, we ob-
tain accuracy values between 76% and 85%. The hyperparameter ranges yielding
the best results are highlighted in Fig. and also summarized in Tab. |5| along
with their optimal value. Adopting the optimal hyperparameters the classifica-
tion accuracy over the considered damage localization task increases from the
previous value of 83% up to 85%.

Fig. [ shows the confusion matrix computed after the grid search hyperpa-
rameter optimization. We can observe the accuracy value improved for some
classes in comparison to the non-optimized model. Specifically, the ground and
1%t-floor classes demonstrated an improvement in accuracy, whereas 2"¢-floor
classes showed marginal or no change. Such classes count the highest number
of misclassifications compared to the respective classes shown in the confusion
matrix shown in Fig. [6]

Despite the partial improvement across classes, the optimization process im-
proved the overall performance of the model, indicating the importance of hy-
perparameter tuning in machine learning algorithms.
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Batch Drop kern1 kern2 kern3 Pool1 Pool2 Pool3 fc

Acc
0.86

0.84
0.82
0.8

0.78

0.76

Batch Drop kern1 kern2 kern3 Pool1 Pool2 Pool3 fc

Fig.8: Hyperparameter optimization:(a) iterations of the random search opti-
mization algorithm; (b) identified value ranges yielding an improved perfor-
mance.

5 Conclusion

Within a structural health monitoring framework, this work has proposed a
comprehensive methodology for structural damage localization based on con-
volutional neural networks and a digital twins. The digital twin paradigm has
been introduced to meet the need of labeled data to train deep learning mod-
els while adopting a supervised learning approach. The digital twin design has
been carried out through a physics-based numerical model useful to represent
the physical asset in a virtual space. A reduced-order modeling strategy is also
adopted to speed up the entire procedure and allow to move toward real-time
applications. Finally, a classifier based on a convolutional neural network has
been adopted to perform automatic feature extraction and to relate raw sensor
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Confusion matrix
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Fig.9: Confusion matrix on test set after hyperparameter optimization

data to the corresponding structural health conditions. The latter has been fine
tuned using the random search hyperparameter optimization algorithm.

The proposed strategy has been assessed on the monitoring of a two-story
portal frame subjected to the action of seismic events. The damage localization
task has been carried out with a remarkable accuracy and the method has shown
to be insensitive to ambient-induced and measurement noise and to the varying
operational conditions, characterized by seismic events of different nature.

This work represents a preliminary effort to demonstrate the capabilities of
the proposed strategy. Beside the need of a further validation within a suitable
experimental setting, the next studies will also take into account the eventuality
of buildings simultaneously suffering multiple damaged zones. Moreover, a com-
parison with alternative deep learning architectures, such as the long-short term
memory model and the transformer model, should be envisaged.
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