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Abstract

In recent years, the robotics field has witnessed an unprecedented surge in the development of humanoid robots, which bear

an increasingly close resemblance to human beings in appearance and functionality. This evolution has presented researchers

with complex challenges, particularly in the domain of controlling the increasing number of robotic motors that animate these

lifelike figures. This paper focuses on a novel approach to managing the intricate facial expressions of a humanoid face endowed

with 22 degrees of freedom. We introduce a groundbreaking inverse kinematic model that leverages deep learning regression

techniques to bridge the gap between the visual representation of human facial expressions and the corresponding servo motor

configurations required to replicate these expressions. By mapping image space to servo motor space, our model enables precise,

dynamic control over facial expressions, enhancing the robot’s ability to engage in more nuanced and human-like interactions.

Our methodology not only addresses the technical complexities associated with the fine-tuned control of facial motor servos

but also contributes to the broader discourse on improving humanoid robots’ social adaptability and interaction capabilities.

Through extensive experimentation and validation, we demonstrate the efficacy and robustness of our approach, marking a

significant advancement in humanoid robotics control systems.
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Advanced Control of Humanoid Facial Robotics: A
Deep Learning Approach to Inverse Kinematics

Graziano A. Manduzio, Federico Galatolo, Mario G. C. A. Cimino, Mattia Bruscia, Lorenzo Cominelli*, and
Enzo Pasquale Scilingo*

Abstract—In recent years, the robotics field has witnessed an
unprecedented surge in the development of humanoid robots,
which bear an increasingly close resemblance to human beings
in appearance and functionality. This evolution has presented
researchers with complex challenges, particularly in the domain
of controlling the increasing number of robotic motors that
animate these lifelike figures. This paper focuses on a novel
approach to managing the intricate facial expressions of a hu-
manoid face endowed with 22 degrees of freedom. We introduce
a groundbreaking inverse kinematic model that leverages deep
learning regression techniques to bridge the gap between the
visual representation of human facial expressions and the corre-
sponding servo motor configurations required to replicate these
expressions. By mapping image space to servo motor space, our
model enables precise, dynamic control over facial expressions,
enhancing the robot’s ability to engage in more nuanced and
human-like interactions. Our methodology not only addresses
the technical complexities associated with the fine-tuned control
of facial motor servos but also contributes to the broader
discourse on improving humanoid robots’ social adaptability
and interaction capabilities. Through extensive experimentation
and validation, we demonstrate the efficacy and robustness of
our approach, marking a significant advancement in humanoid
robotics control systems.

Index Terms—deep learning, inverse kinematics, IK, human-
robot interaction, HRI, facial robotics, social robotics, face detec-
tion, face recognition, facial expression imitation, FEI, MTCNN,
InceptionResnetV1, hyperparameter optimization.

I. INTRODUCTION

THE development of humanoid robots has increasingly
focused on achieving human-like appearances and func-

tionalities, presenting significant challenges in the control of
robotic motors for nuanced movements. Inverse kinematics
(IK) is a critical area in this regard, facilitating the transla-
tion of desired end-effector positions into the necessary joint
configurations for movement. The complexity of this task
escalates with the number of degrees of freedom in the robot,
making IK a central focus in robotic research [23, 2]. The
integration of machine learning into robotic control systems
for solving IK problems represents a significant advancement
in the field. Choi et al. [5], and Daya et al. [7], both
found that neural networks can effectively model manipulator
inverse kinematics, with Daya specifically proposing a neural
network architecture for this purpose. Aggogeri et al., further
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enhanced this approach by using a sequential procedure and a
genetic algorithm, resulting in improved accuracy and reduced
manual settings [1]. Kuroe et al., introduced a new method
that simultaneously represents the relations of positions and
velocities, leading to more accurate solutions [12]. Similarly,
the approach of Lu et al., offers a more efficient and flexible
solution for determining joint positions from desired end-
effector locations [15]. Deep Reinforcement Learning (DRL),
in particular, offers a promising approach by providing models
that can learn efficient and practical solutions for controlling
robotic movements, including the nuanced motions required
for facial expressions. This approach not only enhances the
robot’s ability to perform complex tasks but also its capacity
for natural and engaging human interaction (Malik et al.,
[17]). In recent years, the advent of robots that closely mimic
human appearance and behavior has further complicated the
challenges associated with inverse kinematics, particularly in
the realm of facial robotics. Advanced robotic faces now
feature skin-like materials, mimicking the elasticity and texture
of human skin, [16]. This development of Facial Expression
Imitation (FEI) robotic skills, has necessitated sophisticated
inverse kinematics solutions to accurately replicate the com-
plex range of human facial expressions. Recent research efforts
have focused on enhancing humanoid robots’ ability to mimic
human emotional expressions through advanced interaction
models. Park et al., achieved a variety of facial expressions
by adjusting dynamics and enhancing the realism of a robot
through the integration of secondary actions, such as physi-
ological movements like blinking and sinusoidal movements
associated with breathing [18]. They utilized a second-order
differential equation derived from the linear affective space-
expression model to generate dynamic expression movements.
Breazeal at al., elicited Kismet’s robot emotions through the
interpolation within a three-dimensional space, where each
dimension represents valence, arousal, and position [4]. As the
affective state progresses towards extreme values within this
space, expressions intensify accordingly. In the last few year,
deterministic approaches are giving way because their limita-
tion of representing detailed facial expressions in favor of more
advanced stochastic-based techniques. The ability to reproduce
a huge variety of facial expression is important to enhance
emphatic behaviour in social robots. In this respect, machine
learning techniques are taking the lead. Wu et al., utilized
correlations between Action Units (AUs) and servos within a
highly articulated robot face to establish a linear mapping be-
tween the two [24]. This study delves into the process of self-
guided learning aimed at achieving realistic facial expression
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production by a robotic head named Einstein, which features
31 degrees of freedom. Facial motor parameters are learned
using feedback from real-time facial expression recognition
from video. The experiments demonstrate that the mapping of
servos to expressions is successfully learned in less than an
hour of training time. Huang et al., attempted to develop a real-
time expression mimicking method for humanoid robots using
deep Long Short-Term Memory (LSTM) networks [21]. They
proposed a multi-frame imitation algorithm that integrates
an inverse mechanical model and a motion trend model. In
another study, Huang et al., proposed a mapping system from
facial feature sequences to motor position sequences based
on smooth-constraint reversed mechanical model (SRMM) by
combining a sequence-to-sequence deep learning model (a
multi-layer encoding-decoding LSTM structure was used) in
addition to a loss function that incorporates velocity and accel-
eration constraints, thereby improving the smoothness of the
resulting motor position sequences [9]. Particularly in medical
settings, the ability of robots to establish empathetic commu-
nication with humans is crucial. Empathy plays a fundamental
role in facilitating meaningful connections between individuals
and robots, especially in situations where emotional support is
essential for individuals’ psychological well-being, such as in
the case of Autism Spectrum Disorders (ASD). The cognitive
theory of Mindblindness (Baron-Cohen, 1997), which focuses
on the social and communicative difficulties associated with
autism, states that individuals with ASD demonstrate limited
ability to recognize emotions and mental states, hindering
their social interaction [3]. Robots, perceived as non-human
interlocutors but endowed with a certain human likeness, can
play a significant role in helping autistic individuals develop
and practice social and emotional skills in a safe and controlled
environment. The quality of empathetic interaction depends
directly on the precision and accuracy with which the robot
controls its expressions. The greater the degree of control
exerted, the more realistic and engaging the robot’s behavior
will be for humans, positively influencing the effectiveness
of human-robot interactions, especially in sensitive areas such
as autism management. The research conducted by De Rossi
et al., further advanced the therapeutic approach based on
the theory of mindblindness, focusing on the application of
social robots in autism therapy [19]. The use of social robots
offers a unique opportunity to provide personalized and inter-
active support for individuals with autism spectrum disorders,
helping to overcome challenges related to the recognition of
emotions and mental states. Through the simulation of social
scenarios and interaction with the robot, patients can develop
and practice social skills in a controlled and comfortable
environment. This method not only enhances the social skills
of individuals with autism but can also promote their emotional
well-being and social integration. In this work, we propose a
novel approach to the problem of the inverse kinematic for
a humanoid robotic face using a deep learning framework,
detailed in Section II, where a facial-recognition pre-trained
model is fine-tuned for the specific task. We developed the
framework for an advanced humanoid robot, named Abel
(Cominelli et al., [6]), whose details are explained in Section
III, with an incredible capacity of reproducing emotional facial

expression, due to the high-degrees of freedom of its face.
Finally, in Section IV, experimental results of the proposed
framework are described.

II. PROPOSED WORK

A. Overall architecture

The presented framework incorporates a cascading use
of two deep neural network models: Multi-task Cascaded
Convolutional Networks (MTCNN) and InceptionResnetV1.
MTCNN is a network designed for accurate face detection and
alignment, leveraging a cascaded structure with three stages
of deep convolutional networks to detect facial landmarks
and faces [25]. Following MTCNN, InceptionResnetV1, also
known as FaceNet, is employed for facial recognition. It
combines the Inception architecture with residual connections
to enhance learning, and is trained to generate embeddings
of faces that capture the facial features in a high-dimensional
space, facilitating accurate identification and verification of
individuals [22]. In the proposed framework, MTCNN is
utilized to crop a specific section around the robot’s face
with a set dimension, serving as a preparatory step for feature
extraction. Subsequently, InceptionResnetV1 has been adapted
to accept these cropped images from MTCNN as inputs, and
finetuned to output values corresponding to the servo-motor
configurations of the Abel’s face. Both module are provided
in facenet-pytorch, a PyTorch library widely used in
computer vision and security applications, including access
control systems, surveillance, and social media for automatic
photo tagging. The overall pipeline of the proposed framework
is shown in Fig. 1.

B. CNN

MTCNN and InceptionResnetV1 modules exploit a Con-
volutional Neural Network (CNN) architecture, designed for
efficiently handling data with a grid-like structure, such as
1D time series or 2D image pixels [8]. The foundational
work of LeCun et al., particularly with the LeNet network
for recognizing handwritten digits, introduced the use of
the backpropagation algorithm in CNNs [13]. This laid the
groundwork for subsequent advancements, notably the devel-
opment of AlexNet, the pioneering deep convolutional neural
network that significantly advanced image classification [11].
A CNN architecture is structured with several layers, each
with a distinct role in processing and deriving significant
features from the input. Convolutional layers, equipped with
multiple filters or kernels, traverse the input data to per-
form convolutions, identifying specific patterns and spatial
information, thereby producing feature maps. To introduce
non-linearity, an activation function such as Rectified Linear
Unit (ReLU) or its variants like Leaky ReLU or Parametric
ReLU is applied post-convolution. Following convolutional
layers, pooling layers serve to diminish the dimensionality and
spatial size of the feature maps, streamlining the complexity
by summarizing critical information. Typically, max pooling
selects the maximum value within a specific window of the
features, as the representative for that area. The network
then flattens the feature maps into a one-dimensional vector,
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Fig. 1: Pipeline of the proposed framework.

which proceeds to Fully Connected (dense) Layers (FCLs).
These layers are tasked with making predictions or classi-
fications from the features, utilizing activation functions to
maintain non-linearity. The CNN concludes with an output
layer, formulating the predictions with an activation function
suited to the task, such as Softmax for classification, which
computes a probability distribution across various classes [14].
A loss function evaluates the difference between the network
predictions and the actual labels, with the choice of loss
function tailored to the task, like categorical cross-entropy
for multi-class classification [26]. The training phase involves
fine-tuning the parameters of the network to minimize the loss
through optimization algorithms such as stochastic gradient
descent (SGD) or Adam optimizer, enhancing the network ac-
curacy through backpropagation [10]. Despite the complexity
of CNN structures, illustrated in Fig. 2, contemporary machine
learning platforms like PyTorch facilitate the implementation
of the CNN operations.

C. MTCNN

The MTCNN model, as implemented in the
facenet-pytorch library, is designed for efficient
face detection and recognition. It comprises three sequential
stages:

1) P-Net (Proposal Network): Generates candidate win-
dows for faces across multiple scales, outputting bound-
ing boxes and confidence scores;

2) R-Net (Refine Network): Refines the bounding boxes
from the P-Net, eliminating many false positives and
providing updated confidence scores;

3) O-Net (Output Network): Performs further refinement
on bounding boxes and outputs facial landmarks along-
side confidence scores.

This cascaded architecture allows for a fine-grained approach
to face detection, making the facenet-pytorch imple-
mentation of MTCNN a popular choice in various applications.
In the proposed image processing pipeline, the MTCNN model
is employed, as implemented in the facenet-pytorch
library, to detect and crop the face of Abel from input images.
This approach allows us to focus exclusively on the regions
of interest, thereby enhancing the efficiency of subsequent
facial analysis and recognition phases. The MTCNN model is
configured with specific parameters to optimize face detection
according to the characteristics of our dataset and the require-
ments of our pipeline. The used parameters are as follows:

• image size: The size of the cropped face images. Set
to 160 pixels, ensuring a standard dimension for all
processed faces, which aids in maintaining consistency
in the recognition phase;

• margin: The margin around the detected face. We opted
for a 0 margin, meaning the cropping is tight around the
detected face boundaries;

• min face size: The minimum size of faces to be de-
tected. Set to 20 pixels to ensure that even smaller faces
within the images are detected and processed;

• thresholds: The detection thresholds for the three stages
of the MTCNN. Set to [0.6, 0.7, 0.7], these thresholds
balance the trade-off between detection accuracy and the
number of false positives;

• factor: The scale factor for the image pyramid used
in face detection. Set to 0.709, it controls the scale at
which the image is rescaled at each step, influencing the
detection of faces of various sizes;

• post process: Indicates whether to apply a post-
processing step to the cropped faces. Set to True, en-
suring that the cropped images are properly aligned and
enhanced for better recognition results.

Table I shows the proper configuration of the MTCNN param-
eters used in the proposed work pipeline, crucial in tailoring
the face detection process to our specific needs, ensuring high-
quality cropping of Abel’s face for further analysis within our
framework pipeline.

TABLE I: MTCNN parameters used in the proposed work
pipeline

Parameter Value

image_size 160
margin 0
min_face_size 20
thresholds [0.6, 0.7, 0.7]
factor 0.709
post_process True

D. InceptionResnetV1

In the proposed image processing pipeline, we leverage the
InceptionResNetV1 model, a renowned architecture known for
its high performance in facial recognition tasks. This model is
part of the facenet-pytorch library and is instrumental
in processing images cropped by the MTCNN model. Upon
receiving cropped face images, the InceptionResNetV1 model
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Fig. 2: Schematic structure of CNN.

transforms these images into a high-dimensional embedding.
This embedding effectively captures the unique features of the
face, serving as a distinctive representation that can be used
for various facial analysis tasks. The model employed in our
pipeline is pretrained on the vggface2 dataset, offering a
robust foundation for facial feature extraction. To adapt the
model for our specific application, namely generating config-
urations for servos based on facial features, we introduced
a modification to the model output layer. Specifically, we
appended a linear layer with 22 outputs to the existing archi-
tecture. This layer is designed to map the high-dimensional
face embeddings to a 22-dimensional space, corresponding
to the configurations of the servos. To constrain the servo
configuration values between 0 and 1, ensuring they remain
within a valid range, the output of the linear layer is passed
through a sigmoid activation block. This operation transforms
the linear layer outputs into a set of values that are inter-
pretable as servo configurations, enabling precise control over
the servos based on the detected facial features. The pretrained
InceptionResNetV1 model was fine-tuned using images of
Abel’s face, tailoring the model to our robot’s specific facial
characteristics. This fine-tuning process ensures the resulting
model embeddings to be highly relevant and accurate for the
mapping task. The Mean Absolute Error Loss (MAELoss)
was employed as loss function. This loss is well-suited for
regression tasks like the one proposed in this work, where
the goal is to predict servo configurations as accurately as
possible. Given θi, the target servo position vector of the i-
th sample, and θ̂

k

m,i, the predicted servo position vector by
the InceptionResnetV1 training model m at time step k, the
MSELoss between these two vectors is defined as:

MSELoss(θi, θ̂
k

m,i) ≜
1

ns

ns∑
s=1

(θi,s − θ̂km,i,s)
2 (1)

where:

• ns is the dimension of the vectors θi and θ̂
k

m,i, indicating
the number of components (or servos) in the servo
position vector;

• θi,s represents the s-th component of the actual servo
position vector θi for the i-th sample;

• θ̂km,i,s is the s-th component of the predicted vector θ̂
k

m,i

by model m at time step k.
This version of the MSELoss specifically evaluates the
accuracy of the predictions made by model m for the i-th
sample at time step k, by calculating the mean of the squares
of the differences between each component of the target servo
position vector and its corresponding predicted component.
Lower values of this loss function indicate that model m is
able to predict the servo positions more accurately at time step
k, while higher values indicate less accurate predictions. The
employed optimizer is Adam, for its effectiveness in handling
sparse gradients and its adaptive learning rate capabilities.
The fine-tuning training of the proposed InceptionResnetV1
model was not a one-off process; it involved multiple iterations
with varying hyperparameters to optimize performance. The
intricacies of the hyperparameter tuning process, including
the range of values explored for each parameter and the
methodology employed for evaluating model performance, is
presented in Subsection III-C. Through iterative training and
hyperparameter tuning, we developed a robust system capable
of translating facial features into precise servo configurations.

III. EXPERIMENTAL SETUP

A. Abel

The design of Abel’s body was strongly influenced by the
importance of being emotionally expressive, a concept that has
guided the entire process. This emphasis on emotional expres-
siveness has been developed based on years of experience with
the Facial Automaton for Conveying Emotions (FACE) robot,
a social robot with human-inspired facial expressiveness that
is used in therapy with children with autism spectrum disorder
and in educational contexts as a synthetic tutor [20]. Abel’s
face plays a crucial role in interaction with humans, thanks
to motors that allow precise control of facial expressions.
Its expressiveness not only gives the robot a more human-
like appearance but also optimizes interaction with humans,
making it more natural and engaging. Collaboration between
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engineers and creatives with such artistic inspiration has been
crucial in this regard, as mechatronics is dictated by the
shape of the robot’s face and body, as well as its conceptual
design. The ns = 22 facial motors, housed in Abel’s skull,
allow a wide range of realistic and refined facial movements,
from executing glances to simulating speech through a system
of mechanical movement transmission and control module.
Specifically, 4 move the forehead, 1 for the jaw, 4 for the
mouth, 2 for the cheeks, 1 for the chin (Futaba BLS 173 SV),
8 for the eyes, and 2 for the lips (MKS HV 93 and MKS
HV6130). Additionally, 5 motors are dedicated to the neck
and head movement (Dynamixel XM 540-W270-T). Finally,
in each arm, 3 motors are mounted for the shoulder, 1 for the
elbow, 1 for rotating the arm (Dynamixel XM 540-W270-T),
and 3 motors in each hand (MKS HV6130H), for a total of 43
degrees of freedom (for more details on motors, see Table II
and Table III, for a graphic representation of the motors of
the face, see Fig. 3). Futaba BLS motors offer a combination
of high speed, torque, and precision, making them suitable
for applications requiring rapid and precise movements. Their
reliability and durability make them a valid choice for a robot
like Abel. MKS motors are known for their robustness and
power, making them ideal for movements requiring greater
strength and resistance. Their ability to handle heavy loads
makes them suitable for applications requiring more vigorous
and detailed movements. Control of Abel’s facial motors is
entrusted to two Pololu Mini Maestro 12-channel controllers.
This device allows synchronized and precise management of
movements, necessary for precise and smooth control of po-
sition, speed, and acceleration of connected servo motors and
consequently facial expressions. It also has a USB interface
for programming and control of the module through dedicated
software and allows the use of communication protocols such
as TTL serial, I²C, and USB to integrate the module with
other devices and microcontrollers. In particular, this control
module is chosen for its ability to simultaneously manage
up to 12 output channels and for advanced programming
options, features that make it ideal for integration with Abel’s
control system. In summary, the combination of high-quality
motors and a sophisticated control system ensures that Abel
is capable of expressing a wide range of emotions realistically
and engagingly in its daily interactions.

B. Dataset

The dataset of robot faces was created following a system-
atic approach to capture the variability in robot expressions.
To assemble this dataset, a Microsoft LifeCam HD-6000
camera was used, positioned at a fixed distance from the
robot, in a controlled light disposition setting to avoid shading
issues. A total of ni = 231 images were captured. These
images represent various random configurations of the robot
servo position vector θ, each one drawn from an uniform
probability distribution function. Each element of the position
vector θ assume value between 0 and 1, corresponding to
the normalized Pulse Width Modulation (PWM) signal values,
representing the minimum and maximum achievable angles for
the servos. This method ensures a consistent and controlled

Fig. 3: Arrangement of servomotors for face control.

TABLE II: Facial expression servomotors

ID motor Function Servo model

0 Eyelid lower Lx MKS HV6130
1 Eyelid top Lx MKS HV6130
2 Eyelid lower Rx MKS HV6130
3 Eyelid top Rx MKS HV6130
4 Eye direction U/D Lx MKS HV 93
5 Eye direction U/D Rx MKS HV 93
6 Eye direction I/O Lx MKS HV 93
7 Eye direction I/O Rx MKS HV 93
8 Outer brow Lx Fut. BLS 173 SV
9 Inner brow Lx Fut. BLS 173 SV

10 Outer brow Rx Fut. BLS 173 SV
11 Inner brow Rx Fut. BLS 173 SV
12 Jaw Fut. BLS 172 SV
13 Mouth corner U/D Lx Fut. BLS 173 SV
14 Mouth corner I/O Lx Fut. BLS 173 SV
15 Mouth corner U/D Rx Fut. BLS 173 SV
16 Mouth corner I/O Rx Fut. BLS 173 SV
17 Cheek Lx Fut. BLS 173 SV
18 Cheek Rx Fut. BLS 173 SV
19 Lip top Lx MKS HV 93
20 Lip top Rx MKS HV 93
21 Chin Fut. BLS 173 SV

variation in the robot facial expressions, providing a rich
dataset for the proposed application. Thus, the dataset consists
of a tuple D = {Xi,θi}ni

i=1, where Xi ∈ Rnw×nh with height
nh = 480 pixel and width nw = 640 pixel, is the i-th image
and θi ∈ Rns is the i-th servo configuration vector. A sample
of cropped Abel’s faces from the original dataset is shown in
Fig. 4a. For the training of the modified InceptionResnetV1
(proposed in Subsection II-D), we split the dataset in 80% for
the training set, 10% for the validation set and 10% for the
test set.
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TABLE III: Body servomotors

ID motor Function Servo model

0 Shoulder joint frontal Lx Dyn. XM 540-W270-T
1 Shoulder joint lateral Lx Dyn. XM 540-W270-T
2 Upper arm twist Lx Dyn. XH 430-W350-T
3 Arm elbow Lx Dyn. XM 540-W270-T
4 Lower arm twist Lx Dyn. XL 430-W250-T
5 Shoulder joint frontal Rx Dyn. XM 540-W270-T
6 Shoulder joint lateral Rx Dyn. XM 540-W270-T
7 Upper arm twist Rx Dyn. XH 430-W350-T
8 Arm elbow Rx Dyn. XM 540-W270-T
9 Lower arm twist Rx Dyn. XL 430-W250-T
10 Wrist Lx MKS HV6130H

11 - 12 Fingers (×2) Lx MKS HV6130H
13 Wrist Rx MKS HV6130H

14 - 15 Fingers (×2) Rx MKS HV6130H
16 Head twist Dyn. XM 540-W270-T
17 Upper neck Lx Dyn. XH 430-W350-T
18 Upper neck Rx Dyn. XH 430-W350-T
19 Lower neck Lx Dyn. XM 540-W270-T
20 Lower neck Rx Dyn. XM 540-W270-T

C. Hyperparameter optimization

Before training our machine learning model, we undertook a
comprehensive hyperparameter optimization process. This was
facilitated by the utilization of the Weights & Biases (wandb)
tool, allowing us to systematically explore a range of values
for key parameters and ascertain their optimal settings. Partic-
ularly for data augmentation-related parameters, our approach
involved varying each parameter within a range that extends
from 0 to the specified maximum value. This strategy ensured
that each iteration of the training process incorporated data
augmentation to a degree dictated by the maximum value,
thereby enhancing the robustness and generalization capability
of our model. The following list details the parameters that
subject to be variated during the optimization process:

• learning rate: Explored values included 0.001, 0.0001,
and 0.00001, adjusting the pace at which the model
learns;

• batch size: Considered values were 8, 16, and 32, deter-
mining the number of training samples to process before
updating the model’s internal parameters;

• max epochs: The values set for exploration were 10, 50,
100, and 300, establishing the maximum iterations over
the complete training dataset;

• apply transform probability: This parameter was ad-
justed within 0, 0.5, 0.75, and 1.0, governing the prob-
ability of applying transformations such as rotations and
translations to the input data during training;

• affine degrees: For image rotation in data augmentation,
the range was set between 0 and the maximum values of
10, 20, and 30 degrees;

• affine translate: The translation of images in data aug-
mentation was confined within a range from 0 to maxi-
mum values of 0.1, 0.2, and 0.3, expressed as a fraction
of image dimensions;

• affine scale: Scaling of images in data augmentation was
varied from 0 up to maximum values of 0.1, 0.2, and 0.3;

• color brightness: The brightness adjustment in color
augmentation of images was explored from 0 up to

maximum values of 0.1, 0.2, and 0.3;
• color contrast: For altering the contrast in color aug-

mentation of images, the range was from 0 to maximum
values of 0.1, 0.2, and 0.3;

• color saturation: The saturation in color augmentation
of images was varied from 0 up to maximum values of
0.1, 0.2, and 0.3;

• color hue: The hue adjustment in color augmentation of
images was set within a range from 0 to maximum values
of 0.1, 0.2, and 0.3;

These parameters and their respective values, which were
explored during hyperparameter optimization, are summarized
in Table IV. Examples of generated augmented data from the
original dataset are shown in Fig. 4b.

TABLE IV: Hyperparameter optimization values

Parameter Values

learning_rate 0.001, 0.0001, 0.00001
batch_size 8, 16, 32
max_epochs 10, 50, 100, 300
apply_transforms_probability 0.0, 0.5, 0.75, 1.0
affine_degrees 0, 10, 20, 30
affine_translate 0.0, 0.1, 0.2, 0.3
affine_scale 0.0, 0.1, 0.2, 0.3
color_brightness 0.0, 0.1, 0.2, 0.3
color_contrast 0.0, 0.1, 0.2, 0.3
color_saturation 0.0, 0.1, 0.2, 0.3
color_hue 0.0, 0.1, 0.2, 0.3

D. Metrics and data evaluation methods
Suppose the following notations:
• ni represents the number of samples or data points in the

dataset;
• ns represents the number of servos;
• θi refers to the target servo position vector of the i-th

data sample;
• θ̂m,i refers to the predicted servo position vector from a

trained model m, given the image Xi as input;
• θi,s refers to the s-th target servo position related to the

i-th target servo position vector;
• θ̂m,i,s refers to the s-th predicted servo position related to

the i-th predicted servo position vector from the trained
model m;

• Θ is the matrix of size ni×ns whose raws are the vectors
θi;

• Θ̂m is the matrix of size ni × ns whose raws are the
vectors θ̂m,i;

• Θs is the s-th column of Θ;
• Θ̂m,s is the s-th column of Θ̂m;
• Θs,i is the i-th element of Θs;
• Θ̂m,s,i is the i-th element of Θ̂m,s.

then, the following metrics are used as benchmarks for the
hyperparameter optimization:

Mean Squared Error (MSE): measures the average
squared difference between the predicted and the target values:

MSE(θi, θ̂m,i) ≜
1

ns

ns∑
s=1

(θi,s − θ̂m,i,s)
2 (2)
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(a) Original cropped face images

(b) Transformed cropped face images

Fig. 4: Subset of data samples of cropped images of Abel’s face (a) paired with an example of related augmentations (b).

Average Sample - Mean Squared Error (AS-MSE): calcu-
lates the MSE for each servo across all samples:

AS-MSE(Θs, Θ̂m,s) ≜
1

ni

ni∑
i=1

(Θs,i − Θ̂m,s,i)
2 (3)

Average Overall - Mean Squared Error (AO-MSE): com-
bines the MSE across all servos and samples:

AO-MSE(θi, θ̂m,i) ≜
1

ni

ni∑
i=1

MSE(θi, θ̂m,i)

=
1

ns

ns∑
s=1

AS-MSE(Θs, Θ̂m,s)

(4)

Root Mean Squared Error (RMSE): is the square root of the
average squared differences between the predicted and target
values:

RMSE(θi, θ̂m,i) ≜

√√√√ 1

ns

ns∑
s=1

(θi,s − θ̂m,i,s)2 (5)

Average Sample - Root Mean Squared Error (AS-RMSE):
calculates the RMSE for each servo across all samples

AS-RMSE(Θs, Θ̂m,s) ≜

√√√√ 1

ni

ni∑
i=1

(Θs,i − Θ̂m,s,i)2

(6)

Average Overall - Root Mean Squared Error (AO-RMSE):
combines the RMSE across all servos and samples:

AO-RMSE(θi, θ̂m,i) ≜
1

ni

ni∑
i=1

RMSE(θi, θ̂m,i)

=
1

ns

ns∑
s=1

AS-RMSE(Θs, Θ̂m,s)

(7)

Mean Absolute Error (MAE): measures the average magni-
tude of errors in a set of predictions:

MAE(θi, θ̂m,i) ≜
1

ns

ns∑
s=1

|θi,s − θ̂m,i,s| (8)

Average Sample - Mean Absolute Error (AS-MAE): calcu-
lates the MAE for each servo across all samples:

AS-MAE(Θs, Θ̂m,s) ≜
1

ni

ns∑
s=1

|Θs,i − Θ̂m,s,i| (9)

Average Overall - Mean Absolute Error (AO-MAE): com-
bines the MAE across all servos and samples:

AO-MAE(θi, θ̂m,i) ≜
1

ni

ni∑
i=1

MAE(θi, θ̂m,i)

=
1

ns

ns∑
s=1

AS-MAE(Θs, Θ̂m,s)

(10)

R-squared (R²): indicates the proportion of the variation in a
set of predictions:

R2(θi, θ̂m,i) ≜ 1−
∑ns

s=1(θi,s − θ̂m,i,s)
2∑ns

s=1(θi,s − θ̄m,i)2
(11)

where θ̄m,i is the average of predicted servo positions across
all servos, expressed as:

θ̄m,i ≜
1

ns

ns∑
s=1

θ̂m,i,s (12)

Average Sample - R-squared (AS-R²): calculates the R² for
each servo across all samples:

AS-R2(Θs, Θ̂m,s) ≜ 1−
∑ni

i=1(Θs,i − Θ̂m,s,i)
2∑ni

i=1(Θs,i − Θ̄m,s)2
(13)

where Θ̄m,s is the average of predicted servo positions across
all samples, expressed as:

Θ̄m,s ≜
1

ni

ni∑
i=1

Θ̂m,s,i (14)

Average Overall - R-squared (AO-R²): combines the R²
across all servos and samples:

AO-R2(θi, θ̂m,i) ≜
1

ni

ni∑
i=1

R2(θi, θ̂m,i)

=
1

ns

ns∑
s=1

AS-R2(Θs, Θ̂m,s) (15)
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In the next section (Section IV), to analyze the data of
hyperparameter optimization, comparisons between target and
predicted servo positions are plotted, as well as estimated
Probability Density Functions (PDFs) using the Kernel Density
Estimation (KDE) method. KDE is a non-parametric method
used to estimate the PDF of a random variable. For a generic
random variable x the estimated PDF f̂(x) expressed by (16),
calculated with the sns.kdeplot() method of Seaborn, a
python library, is given by the sum of kernel functions centered
on each data point, normalized so that its integral over the
entire space equals 1. Mathematically, the formula is:

f(x) =
1

nω

n∑
i=1

K

(
x− xi

ω

)
(16)

where:
• n is the number of observations (data points),
• xi are the data points,
• ω is the bandwidth that controls the smoothness of the

PDF curve,
• K is the kernel function, which measures the distance

between the observation point x and each data point xi in
terms of probability. In the case of Seaborn, the Gaussian
kernel is often used, which has the form:

K(u) =
1√
2π

e−
1
2u

2

(17)

The selection of the kernel K and the bandwidth ω is pivotal
in the KDE estimation. Seaborn automates the choice of ω
with preset values based on widely accepted heuristics, but
users have the option to modify ω to affect the resulting
PDF’s smoothness through the bw_adjust parameter in
sns.kdeplot(). In Section IV, we compare the estimated
PDFs of the random variables θ̄ with θ̄m, whose observed data
are θ̄i and θ̄m,i, respectively, where:

θ̄i ≜
1

ns

ns∑
s=1

θi,s (18)

We also compare estimated PDF of the AO-MAE using the
KDE method applied to data resulting from a Monte Carlo
evaluation. Experimental results related to the single servos
performance evaluations are provided in the supplementary
materials of this article.

IV. EXPERIMENTAL RESULTS

A. Hyperparameter optimization

We ran N = 500 simulations with different values of the
hyperparameters. All simulations were run on a cluster of 4
NVIDIA A100 graphics process units (GPUs). Consider mr

to be the r-th model related to the r-th simulation and to
evaluate the best model through the best performance on the
validation set. The model m = m∗ with the minimum value
of AO-MAE for the validation set is m408. The setting of
hyperparameters related to m∗ is shown in Table V. We can see
how the parameter affine_transforms_probability
is 0, meaning that the optimization process excludes the
augmentation for the model. The overall model evaluation for
the hyperparameter optimization, is shown in Fig. 5, where

the AO-MAE for the validation set of each model mr is
expressed over the days of execution (d). The value related
to the model m∗ is highlighted with a red dot. The related
performance metrics of m∗ are listed in Table VI. Results
demonstrate how MAE metrics are lower than 0.10, meaning
that the model m∗ is able to predict the Abel’s face servo
positions with an overall error lower than 10%. MSELoss
comparison over the iterations for the training and validation
set, during the training of m∗, is shown in Fig. 6, where the
iT denotes that the sample θiT belongs to the training set,
and the V in iV denotes that the sample θiV belongs to the
validation set.

Fig. 5: Overall evaluation for the hyperparameter optimization
of the proposed fine-tuned InceptionResnetV1 model.

Fig. 6: Comparison of MAELoss over k for the validation
and training set, during the training of m∗ during the hyper-
parameter optimization process.

B. Monte Carlo evaluation

Despite the hyperparameter optimization excluded the aug-
mentation data process, the stochasticity of the model during
the training phase still persists due to the randomicity of the
initial weight distribution and the shuffle during the batch
splitting process. Thus, for a robust performance evaluation
of the hyperparameter configuration related to the model m∗

we conducted a Monte Carlo evaluation of M = 180 multiple
model training runs with the same hyperparameter values of
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TABLE V: Hyperparameter configuration of m∗

Parameter Value

affine_degrees 20
affine_scale 0.1
affine_translate 0
apply_transforms_prob 0
batch_size 32
color_brightness 0.3
color_contrast 0
color_hue 0.1
color_saturation 0.3
learning_rate 0.001
max_epochs 300

TABLE VI: Overall performance metrics of m∗ for the run of
the hyperparameter optimization.

dataset AO-MSEm∗ AO-RMSEm∗ AO-MAEm∗ AO-R2
m∗

train 0.001 0.036 0.028 0.984
val. 0.015 0.123 0.081 0.823
test 0.008 0.092 0.067 0.898

the model m∗ (listed in Table V). For each model m = m◦
r ,

where r is the index of the r-th trial, we evaluated the average
metrics related to m = m◦, the generic model with the same
hyperparameter configuration of m∗. Indeed, the symbol ◦
denotes the metrics are averaged over the set of all the M
Monte Carlo runs. From the resulting data, the plots of the
PDFs of the AO-MAEm◦ for the train, validation and test set,
are shown in Fig. 7. In this figures, notation A, denotes the area
underlying the curve of the estimated PDFs. Notations TR
(train), TE (test) e V (validation) denote the type of dataset
over which the metrics are calculated. The average of the
MAE distribution, along with all the other metrics are shown
in Table VI. Fig. 8 show the distribution of the target values
versus the predicted values. Finally, Fig. 9 show the estimated
PDFs of the target versus the predicted values. Results prove
how the hyperparameter configuration of m∗ is able to train
models that perform with an average overall MAE error
lower than 10% for both the validation and test set. Finally,
the output of an instance (i.e., with the same hyperparameter
configuration) of the model m◦, given an image of the test
set, is shown in Fig. 10.

V. CONCLUSION

This research work successfully developed a comprehensive
framework for training inverse kinematics models capable of
accurately mapping facial expressions to servo positions in
Abel, a robot with a high degree of facial movement com-
plexity. By leveraging a pre-trained InceptionResnetV1 model,
which was further fine-tuned with images of Abel’s face
displaying various expressions linked to random servo position

TABLE VII: Overall evaluation metrics for the model m◦,
averaged over the Monte Carlo runs.

dataset AO-MSEm◦ AO-RMSEm◦ AO-MAEm◦ AO-R2
m◦

train 0.001 0.037 0.029 0.982
val. 0.018 0.127 0.090 0.766
test 0.011 0.096 0.074 0.866

Fig. 7: Estimated PDFs of the AO-MAEm◦ metric for the
train, validation and test set.

Fig. 8: Predicted versus target servo position values, averaged
on the Monte Carlo runs.

vectors, we established a robust method to obtain this. The
optimal configuration of model hyperparameters was identified
through a rigorous optimization process, and the effectiveness
of this configuration was confirmed through statistical analysis
of data resulting from a set of Monte Carlo simulations.
The models demonstrated good performance both overall and
in nearly all individual servo evaluations. This framework
paves the way for the development of more advanced models
that can enable robots to mimic and emulate human facial
expressions, and simulate empathy, with a high level of detail.
Such advancements hold promising implications for enhancing
human-robot interaction, contributing significantly to the field
of social robotics. In conclusion, our work not only showcases
the potential of using deep learning techniques in robotics but
also paves the way to research in creating more expressive and
interactive robots.
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Fig. 9: Comparison of the estimated PDFs of the overall target
servo positions of the train, validation and test set, versus the
predicted servo positions, averaged over the Monte Carlo runs.
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Fig. 10: Output of an instance of the generic model m◦, given
as input an image Xi of the test set.
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