Noise Boosted Neural Receptive Fields

Mario G.C.A. Cimino
Dept. Information Engineering
University of Pisa
Pisa, Italy
mario.cimino@unipi.it

Federico A. Galatolo
Dept. Information Engineering
University of Pisa
Pisa, Italy
federico.galatolo@ing.unipi.it

Abstract—Conventional neural networks (NNs) for image
classification make use of a convolutional layer and a feedforward
(FF) classification layer. This paper presents a novel classification
layer architecture and a training paradigm, in which the FF layer
is split into small and specialized FF nets called Noise Boosted
Receptive Fields (NBRFs), one per class. Each i-th NBRF provides
three membership degrees: to the i-th class, to the super class
made by its complementary classes, and to an extra class
representing out-of-classes images. The training process
artificially generates extra-class samples, via image
transformation and noise addition. Experimental results, carried
out on MNIST, KMNIST and FMNIST datasets show that, with
respect to an FF layer, the NBRF layer improves robustness and
accuracy of classification. The repository with the source code and
experimental data has been publicly released to facilitate
reproducibility and widespread adoption.

Keywords—neural network, supervised learning, boosting,
receptive field, image classification.

I. INTRODUCTION AND BACKGROUND

Convolutional Neural Networks (CNNs) are largely
recognized as effective models for solving image classification
tasks. CNNs employs convolutional hidden layers for feature
extraction, i.e. for reducing data dimension and redundancy,
generating feature maps. CNNs adopt feedforward (FF) neural
networks to generate the output class from the feature space.

The explosion of connections needed by FF architectures for
complex mappings leads to increasing difficulties in modeling
and to inability to cope with highly nonlinear relationships [1].
To tackle this problem, in this paper a novel architecture is
proposed, based on the concept of Receptive Field (RF) [1][2].
The concept of RF is related to local modeling, i.e., it relates to
sub-models that focus predominantly on some selected regions
of the entire modeling domain. In contrast to fully dense
networks, appropriate RFs help the network to focus on local
features of the input. Sequences of convolutional layers are an
example of this method, which allows networks to extract
complex, hierarchical features from increasingly large portions
of the input [3]. This research work aims to adopt this design
approach for the classification layer.

In the literature, an FF neural network architecture based on
sub-models is known as modular neural network. It is made by
a collection of neural networks moderated by a subsequent layer
[4]. Each neural network serves as a module and operates on
separate inputs to accomplish some subtask of the overall task.
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The moderator layer takes the output of each module and
provides the output of the network as a whole. Recent works also
focus on modular architectures to achieve model-intrinsic
interpretability [4]. For example, different classes in a
classification task may belong to a common superclass. This sort
of category hierarchy can be exploited through specific network
architectures as shown in [5]. In the literature, a type of
interpretable neural architecture based on RF and computational
stigmergy, called stigmergic RF, has been designed and
successfully used to time series for behavioral analysis via
wearable sensing [6][7][8]. Here, each RF is related to a
different time series pattern. Another application field where an
RF-based architecture has been successfully used to achieve
interpretability is that of financial time series [9].

The novelty of the undertaken study relates to a new way in
which RFs are being formed and optimized for image
classification. Specifically, this work introduces the Noise
Boosted Receptive Field (NBRF), a classification architecture
and a training paradigm based on modular FF nets. With respect
to a conventional FF classification layer with the same number
of parameters, a layer of NBRFs is more accurate and robust,
because it allows to recognize noise (extra-class) samples. Noise
samples are artificially generated at training time via image
transformation and noise addition. Experimental results, carried
out on MNIST, KMNIST and FMNIST datasets, compare the
FF and the NBRF layers, with different extra-class generation
techniques. As a result, the NBRF layer improves robustness and
accuracy of classification. The repository with the source code
and experimental data has been publicly released to facilitate
reproducibility and widespread adoption [11].

The paper is organized as follows. In Section II, the design
of the NBRF is formally discussed. Experimental studies related
to MNIST, KMNIST and FMNIST benchmarks are documented
in Section IIL. Finally, Section IV draws some conclusions and
future work.

II. DESIGN OF NOISE BOOSTED RECEPTIVE FIELDS

In this section, the NBRF classification model is formalized
and discussed. Fig. 1 shows the reference architecture. Given an
input image x, to determine its class c(x) € {Cy,...,C,},a CNN
made up of convolutional and pooling layers is first used to
extract the related feature vector y, as it is commonplace for
image classification [10]. The feature vector is then processed
by n small NBRFs, each made by an FF neural net specialized



on recognizing a domain class. Finally, a moderator component
(MOD) takes the output of each NBRF to determine the overall
output c.
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Fig. 1. NBRF architectural model. The CNN subnetwork is made up of
convolutional and pooling layers, while each subnetwork FF; is made up of
feedforward and softmax layers, specialized to recognize whether the input
image belongs to its class or not, or if it is a noise (extra-class) input.

A. Receptive fields and moderator logic

An i-th NBRF provides three real output values, i.e., lci, Ugi
and uc,, representing the membership degree of x to C;, C;, and
C,. respectively. Specifically, C; is the i-th class, whereas C; is
the superclass made by the union of the classes complementary

to C;:

j#i
C, is an extra class representing out-of-classes images. C,
provides robustness, i.e., the capability to cope with noise and
undetermined input. More precisely, the outputs of an NBRF are
provided via the softmax function. As a consequence, [¢;, Uz
and pc, are normalized, and their sum is 1.

The moderator employs the following inference formulas to
compute the strengthened membership degree of the input
image x to the i-th class:

Mei (1) = pei (%) - [1 = pei (0] - [1 = e, (0] )

which combines three conditions beneficial to the membership
of x to the i-th class: (a) the membership to the i-th class, (b) the
non-membership to the complementary superclass, and (c) the
non-membership to the extra class.

Given the strengthened membership degrees Mc; (x) of each
J-th RF, the class of the input image x is assigned as follows:

C; if maxMg(x) = Mc(x) > M
€t ={ : g

C, otherwise

where M represents the limit membership degree for assigning
a sample to a class. It is computed after the training process, as
the optimum value minimizing the classification error, by
applying Formula (3) to all the input images x of the training set
and of the extra-class set. A good value of M can be easily
found via a grid search on the interval [.5, .9] with step 0.1.

B. Noise boosting approaches

According to the supervised learning paradigm, the NBRF
layer is trained via labelled images. The three classes encoded
by an NBRF are labelled with binary values, i.e., (c;, C;,c;) €
{0,1}3. Two simpler variants can be also considered. The first
variant, hereafter called RF, does not consider C,, i.e., it is
without noise boosting. In this case, ¢, (x) = 0 in (2), and then
(¢;, ¢;) € {0,1}. Another variant, hereafter called NBRF,, does
not consider the complementary superclass C;. In this case,
Uei(x) = 01in (2), and then (¢;, ¢,) € {0,1}2.

For a given training set, for a better accuracy and robustness,
a set of noisy inputs is artificially generated via data
augmentation techniques. This noise boosting allows the weak
learners represented by the NBRFs to generate a global strong
learner [12].

Specifically, the following three techniques are considered
effective:

1) Statistical surrogate of the training set (S for short):
samples generated from a normal distribution with the mean
and variance of the training set;

2) Averaging of training subsets (T for short): samples
generated as the mean of randomly extracted samples of the
training set;

3) Averaging of the training batch (B for short): samples
generated as the mean of the samples of the current training
batch.

The source of generation of the artificial samples can be of
two different types:

1) Input images x (I for short), i.e., the source samples are sets
of training images;

2) Image feature vectors y (F for short), i.e., the source
samples are the feature vectors extracted from sets of
training images.

By combining the different approaches, and considering
NBRF,, RF, and NBRF, the variants listed in Table I are
considered effective.

C. Loss function

The overall architecture, i.e., feature extraction and
classification layers, is trained using the cross-entropy as a loss
function. More specifically, the overall objective function is the
sum of the cross-entropy functions of all NBRFs.

For a given NBREF, the loss function is defined as the
weighted average of the three cross-entropy functions related to
the three outputs. The cross-entropy function of the c-th
membership value, ¢ = ¢;, ¢;, ¢, provided by an NBREF is the
following:

he() = = )W) - log (e () @

X
where . (x) and p (x) are the membership value provided
by the NBRF and the target value, respectively.



TABLE 1. TYPES OF NEURAL NETS ARCHITECTURES

Acronym Description

Output: without complementary super-class;

Noise sample generation: statistical surrogate;
Noise sample source: feature vectors.

Output: without complementary super-class;

Noise sample generation: statistical surrogate;
Noise sample source: input images.

Output: without complementary super-class;

Noise sample generation: averaging training set;
Noise sample source: feature vectors.

Output: without complementary super-class;

Noise sample generation: averaging training set;
Noise sample source: input images.

Output: without complementary super-class;

Noise sample generation: averaging training batch;
Noise sample source: feature vectors.

Output: without complementary super-class;

Noise sample generation: averaging training batch;
Noise sample source: input images.

Output: without complementary super-class, and
without noise extra-class.

Full output;

Noise sample generation: statistical surrogate;
Noise sample source: feature vectors.

Full output;

Noise sample generation: statistical surrogate;
Noise sample source: input images.

Full output;

Noise sample generation: averaging training set;
Noise sample source: feature vectors.

Full output;

Noise sample generation: averaging training set;
Noise sample source: input images.

Full output;

Noise sample generation: averaging training batch;
Noise sample source: feature vectors.

Full output;

Noise sample generation: averaging training batch;
Noise sample source: input images.

NBRF: - SF

NBREF: - SI

NBRF, - TF

NBRF; - TI

NBRF: - BF

NBRF; - BI

RF

NBRF - SF

NBRF - SI

NBRF - TF

NBRF - TI

NBRF - BF

NBRF - BI

CNN - FF

Conventional convolutional and feed-forward layers.

As discussed on the labeling process, target values are
binary, i.e., ut(x) € {0,1}. The cross-entropy function of the
NBREF is the following:

Huprr ()= ) - ho(0)

c=¢;,Ci,Cz

&)

where w, is the weight used for class balancing. The weight w,
is calculated according to the cardinality ratio between each i-
th class and the related i-th superclass or the noise extra-class,
in order to tackle class unbalancing, as follows:

|Ci|/|(_:i| ifxegi
we =4 GI/IG] ifx e (6)
IGil/1C,| if x€C,

Indeed, batch size and number of extra-class samples per
batch are two independent hyperparameters. As a consequence,
the number of generated samples can lead to unbalanced
training. In order to balance the impact of labelled and classless
images, the losses corresponding to each type of image are
weighted in Formula (5). In the case of RF and NBRF,, Formula
(5) and Formula (6) must be simplified, by removing the noise

extra-class and the complementary super class, respectively. In
particular, the denominator value of Formula (5) becomes 2, and
the number of cases in Formula (6) become two.

III. EXPERIMENTAL STUDIES

To investigate the effectiveness of the NBRF architecture,
some experiments have been carried out on three real-world
problems used for benchmarking machine learning algorithms:
MNIST [12], Fashion-MNIST [14], and K-MNIST [15].
MNIST is made of handwritten digits images, Fashion-MNIST
is a dataset of fashion article images, whereas K-MNIST is made
of handwritten Japanese characters. All the datasets are made by
a training set of 60,000 examples, and a test set of 10,000
examples. Each example is a 28x28 image, with pixels in 0-255
grayscale values, associated with a class label of 10 possible
classes. The task is to classify a given image into one of such 10
classes.

A. Architectural settings

All the types of architecture listed in Table I have been
developed and compared. A repository with the source code and
experimental data has been publicly released to facilitate
reproducibility and widespread adoption [11].

To guarantee a fair comparison, the convolutional layers are
identical for all the networks. The classification layers have been
structured so as to have a similar number of weights. Table II
shows the number of weights in the FF layers for each type of
architecture. The first FF layer is equipped with the same
number of weights, whereas the second FF layer is slightly
different because of the structural differences in the number of
outputs.

TABLE II. NUMBER OF WEIGHTS IN THE FF LAYERS
Architecture | 1% FF Layer 2" FF layer Total
NBRF:orRF | 4.000 M 10K 4.010 M
NBRF 4.000 M 15K 4.015M
CNN - FF 4.000 M 50 K 4.050 M

More specifically, the convolutional subnetwork scales the
input through a batch normalization layer, and then it applies
two iterations of convolution, nonlinearity, and pooling layers.
Both convolution layers use 5x5 kernels. The first convolution
produces an output of 20 channels, while the second one
produces one of 50. The nonlinearity function used is a Leaky
ReLU. The pooling operation applies max pooling over 2x2
subregions. The resulting output is flattened, and corresponds
to 800 values per image.

The ten NBRFs are made up of two FF layers. The first layer
is equipped with 500 units. According to Table II, the number
of connections of the first layer is then 800x500=400K per
NBRF. The second layer of an NBRF is made by 3 nodes,
which become 2 nodes for NBRF; and RF. Overall, 500x3 =
15K for NBRF, and 500x2 = 10K for NBRF; and RF, according
to Table II. The first layer is followed by a nonlinearity layer



that applies the Leaky ReLU, while the second layer is followed
by a softmax layer to normalize the outputs.

The CNN - FF network has two FF layers, equipped with
5000 and 10 nodes, respectively. According to Table II, the
total number of weights is 800x5000 + 5000x10 = 40M + 50K.

The Adaptive Moment Estimation (Adam) method [16] has
been used to compute adaptive learning rates for each
parameter of the gradient descent optimization algorithms,
carried out with batch method [17]. Early stopping is used as
stopping criterion for the training loop. The validation loss is
monitored using a patience value of 3. The optimum value
found for M is 0.9. Each architecture has been trained 10 times
to get average performance measurements and confidence
intervals.

B. Analysis of Results

Fig. 2 shows the classification capabilities of the different
network architectures. Let us assume that the training set and
the corresponding test set belong to the same dataset. Although
CNN-FF has been equipped with 35-40K additional weights, it
is apparent that there are NBRF models, such as NBRF-TI,
NBRF-SI, and NBREF,-SI, performing better than the
conventional CNN-FF on the three datasets.

MNIST KMNIST FMNIST

NBRF2-SF
NBRF2-SI
NBRF2-TF
NBRF2-TI
NBRF2-BF
NBRF2-BI
RF
NBRF-SF
NBRF-SI
NBRF-TF
NBRF-TI
NBRF-BF
NBRF-BI
CNN-FF
970 985 1 .93 .96

.99 .80 .86 .92

Fig. 2. Average and confidence intervals of the classification accuracy, for
different architecture variants over different datasets.

The impressive advantage of the proposed architecture is
clear when considering robustness. Let us consider the CNN —
FF. Fig. 3 shows the percentage of samples classified as noise
extra-class, i.e., samples whose membership to all classes is
lower than M = 0.9. For each cell, a related CNN - FF
architecture has been trained with the dataset in the ordinates
and tested with the dataset in the abscissae. As expected,
diagonal cells achieve a classification close to zero, because the
training and testing datasets are the same. Thus, no extra-class
samples are available for that cells. However, the Figure clearly
shows that the architecture is unable to adequately recognize
extra-class samples in the other cells. Indeed, a very high noise
percentage is expected to be found in non-diagonal cells, in
which the architecture has been trained with a dataset and tested
with a completely different dataset. However, the non-diagonal
cells show a very low noise percentage, of about §-16%. Fig. 4
and Fig. 5 show the same type of matrix for NBRF,-TI and

NBRF,-TF. Here, it can be easily noted that the NBRF-based
architecture sensibly outperforms the conventional CNN-FF in
terms of robustness. Indeed, both NBRF,—TI and NBRF,-TF
are able to recognize a considerable fraction of another dataset
as a set of noise extra-class samples.

Finally, Fig. 6 shows the performance of an RF net. It is
worth noting that without noise boosting there is a noticeable
decrease of performance. This proves the effectiveness of the
proposed approach.

0.003+0.003 0.082+0.045 0.137x0.078

MNIST

0.087+0.020 0.003x0.001 0.161+0.061 -4
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KMNIST

0.089+0.036 0.095+0.038 0.017+0.008

FMNIST

KMNIST FMNIST

Test datasets

MNIST

Fig. 3. CNN-FF net: percentage of samples classified as noise extra-class,
with training and testing sets on the ordinates and abscissae, respectively.

IV. CONCLUSION AND FUTURE WORK

In this paper, the concept of modular NBRFs has been
discussed and developed, as an alternative to a monolithic FF
classification layer. The proposed architecture is characterized
by the capability of detecting extra-class samples, thanks to
noise boosting.

With respect to an FF classification layer having the same
number of parameters, a classification layer of NBRFs is more
accurate and robust. It allows by design to recognize noise
extra-class samples. For this purpose, noise samples are
artificially generated at training time via image transformation
and noise addition.

Experimental results have been carried out on MNIST,
KMNIST and FMNIST datasets, to compare the FF and the
NBREF layers, with different extra-class generation techniques.

Results show the high potential of the proposed approach,
encouraging further comparative research. The source code has
been publicly released to facilitate reproducibility and
widespread adoption.
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