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Abstract—Conventional neural networks (NNs) for image 

classification make use of a convolutional layer and a feedforward 

(FF) classification layer. This paper presents a novel classification 

layer architecture and a training paradigm, in which the FF layer 

is split into small and specialized FF nets called Noise Boosted 

Receptive Fields (NBRFs), one per class. Each i-th NBRF provides 

three membership degrees: to the i-th class, to the super class 

made by its complementary classes, and to an extra class 

representing out-of-classes images. The training process 

artificially generates extra-class samples, via image 
transformation and noise addition. Experimental results, carried 

out on MNIST, KMNIST and FMNIST datasets show that, with 

respect to an FF layer, the NBRF layer improves robustness and 

accuracy of classification. The repository with the source code and 

experimental data has been publicly released to facilitate 

reproducibility and widespread adoption. 
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I. INTRODUCTION AND BACKGROUND 

Convolutional Neural Networks (CNNs) are largely 
recognized as effective models for solving image classification 
tasks. CNNs employs convolutional hidden layers for feature 
extraction, i.e. for reducing data dimension and redundancy, 
generating feature maps. CNNs adopt feedforward (FF) neural 
networks to generate the output class from the feature space.  

The explosion of connections needed by FF architectures for 
complex mappings leads to increasing difficulties in modeling 
and to inability to cope with highly nonlinear relationships [1]. 
To tackle this problem, in this paper a novel architecture is 
proposed, based on the concept of Receptive Field (RF) [1][2]. 
The concept of RF is related to local modeling, i.e., it relates to 
sub-models that focus predominantly on some selected regions 
of the entire modeling domain. In contrast to fully dense 
networks, appropriate RFs help the network to focus on local 
features of the input. Sequences of convolutional layers are an 
example of this method, which allows networks to extract 
complex, hierarchical features from increasingly large portions 
of the input [3]. This research work aims to adopt this design 
approach for the classification layer. 

In the literature, an FF neural network architecture based on 
sub-models is known as modular neural network. It is made by 
a collection of neural networks moderated by a subsequent layer 
[4]. Each neural network serves as a module and operates on 
separate inputs to accomplish some subtask of the overall task. 

The moderator layer takes the output of each module and 
provides the output of the network as a whole. Recent works also 
focus on modular architectures to achieve model-intrinsic 
interpretability [4]. For example, different classes in a 
classification task may belong to a common superclass. This sort 
of category hierarchy can be exploited through specific network 
architectures as shown in [5]. In the literature, a type of 
interpretable neural architecture based on RF and computational 
stigmergy, called stigmergic RF, has been designed and 
successfully used to time series for behavioral analysis via 
wearable sensing [6][7][8]. Here, each RF is related to a 
different time series pattern. Another application field where an 
RF-based architecture has been successfully used to achieve 
interpretability is that of financial time series [9]. 

The novelty of the undertaken study relates to a new way in 
which RFs are being formed and optimized for image 
classification. Specifically, this work introduces the Noise 
Boosted Receptive Field (NBRF), a classification architecture 
and a training paradigm based on modular FF nets. With respect 
to a conventional FF classification layer with the same number 
of parameters, a layer of NBRFs is more accurate and robust, 
because it allows to recognize noise (extra-class) samples. Noise 
samples are artificially generated at training time via image 
transformation and noise addition. Experimental results, carried 
out on MNIST, KMNIST and FMNIST datasets, compare the 
FF and the NBRF layers, with different extra-class generation 
techniques. As a result, the NBRF layer improves robustness and 
accuracy of classification. The repository with the source code 
and experimental data has been publicly released to facilitate 
reproducibility and widespread adoption [11]. 

The paper is organized as follows. In Section II, the design 
of the NBRF is formally discussed. Experimental studies related 
to MNIST, KMNIST and FMNIST benchmarks are documented 
in Section III. Finally, Section IV draws some conclusions and 
future work. 

II. DESIGN OF NOISE BOOSTED RECEPTIVE FIELDS 

In this section, the NBRF classification model is formalized 
and discussed. Fig. 1  shows the reference architecture. Given an 
input image �, to determine its class �(�) � ��	, . . . , ��
, a CNN 
made up of convolutional and pooling layers is first used to 
extract the related feature vector �, as it is commonplace for 
image classification [10]. The feature vector is then processed 
by n small NBRFs, each made by an FF neural net specialized 



on recognizing a domain class. Finally, a moderator component 
(MOD) takes the output of each NBRF to determine the overall 
output �. 

 

Fig. 1. NBRF architectural model. The CNN subnetwork is made up of 
convolutional and pooling layers, while each subnetwork FFi is made up of 
feedforward and softmax layers, specialized to recognize whether the input 

image belongs to its class or not, or if it is a noise (extra-class) input. 

A. Receptive fields and moderator logic 

An i-th NBRF provides three real output values, i.e., ���, ���� 
and ��� , representing the membership degree of x to C�, C��, and C�, respectively. Specifically, C� is the i-th class, whereas C� � is 
the superclass made by the union of the classes complementary 
to C�: 

C� � = � C����
 (1) 

C�  is an extra class representing out-of-classes images. C� 
provides robustness, i.e., the capability to cope with noise and 
undetermined input. More precisely, the outputs of an NBRF are 
provided via the softmax function. As a consequence, ���, ����, 
and ���  are normalized, and their sum is 1. 

The moderator employs the following inference formulas to 
compute the strengthened membership degree of the input 
image x to the i-th class: Μ��(�) = ���(�) ⋅ �1 − ����(�)� ⋅ �1 − ���(�)� (2) 

  
which combines three conditions beneficial to the membership 
of x to the i-th class: (a) the membership to the i-th class, (b) the 
non-membership to the complementary superclass, and (c) the 
non-membership to the extra class.  

Given the strengthened membership degrees Μ��(�) of each 

j-th RF, the class of the input image x is assigned as follows: 

 

�(�) =  �! "#   max' Μ��(�) =  Μ��(�) > ℳ �* +,ℎ./0"1.  (3) 

 
where ℳ represents the limit membership degree for assigning 
a sample to a class. It is computed after the training process, as 
the optimum value minimizing the classification error, by 
applying Formula (3) to all the input images x of the training set 
and of the extra-class set. A good value of ℳ can be easily 
found via a grid search on the interval [.5, .9] with step 0.1. 

B. Noise boosting approaches 

According to the supervised learning paradigm, the NBRF 
layer is trained via labelled images. The three classes encoded 
by an NBRF are labelled with binary values, i.e., (�! , �!̅ , �* ) ∈�0,1
5. Two simpler variants can be also considered. The first 
variant, hereafter called RF, does not consider �* , i.e., it is 
without noise boosting. In this case, ���(�) = 0 in (2), and then (�! , �!̅) ∈ �0,1
6. Another variant, hereafter called NBRF2, does 
not consider the complementary superclass �̅! . In this case, ����(�) = 0 in (2), and then (�! , �*) ∈ �0,1
6. 

For a given training set, for a better accuracy and robustness, 
a set of noisy inputs is artificially generated via data 
augmentation techniques. This noise boosting allows the weak 
learners represented by the NBRFs to generate a global strong 
learner [12]. 

Specifically, the following three techniques are considered 
effective: 

1) Statistical surrogate of the training set (S for short): 
samples generated from a normal distribution with the mean 

and variance of the training set; 

2) Averaging of training subsets (T for short): samples 
generated as the mean of randomly extracted samples of the 

training set; 

3) Averaging of the training batch (B for short): samples 
generated as the mean of the samples of the current training 

batch. 

The source of generation of the artificial samples can be of 
two different types: 

1) Input images x (I for short), i.e., the source samples are sets 

of training images; 
2) Image feature vectors y (F for short), i.e., the source 

samples are the feature vectors extracted from sets of 

training images. 

By combining the different approaches, and considering 
NBRF2, RF, and NBRF, the variants listed in Table I are 
considered effective. 

C. Loss function 

The overall architecture, i.e., feature extraction and 
classification layers, is trained using the cross-entropy as a loss 
function. More specifically, the overall objective function is the 
sum of the cross-entropy functions of all NBRFs. 

For a given NBRF, the loss function is defined as the 
weighted average of the three cross-entropy functions related to 
the three outputs. The cross-entropy function of the c-th 
membership value, � = �! , �!̅ , �* , provided by an NBRF is the 
following: 

ℎ7(�) = − 8 �79 (�) ⋅ :+;(�< (�))=  (4) 

where �<(�) and �79 (�) are the membership value provided 
by the NBRF and the target value, respectively. 

 



TABLE I.  TYPES OF NEURAL NETS ARCHITECTURES 

Acronym Description 

NBRF2 – SF 

Output: without complementary super-class; 

Noise sample generation: statistical surrogate; 
Noise sample source: feature vectors. 

NBRF2 – SI  

Output: without complementary super-class; 

Noise sample generation: statistical surrogate; 
Noise sample source: input images. 

NBRF2 – TF 

Output: without complementary super-class; 

Noise sample generation: averaging training set; 
Noise sample source: feature vectors. 

NBRF2 – TI 
Output: without complementary super-class; 
Noise sample generation: averaging training set; 
Noise sample source: input images. 

NBRF2 – BF 

Output: without complementary super-class; 

Noise sample generation: averaging training batch; 
Noise sample source: feature vectors. 

NBRF2 – BI 

Output: without complementary super-class; 

Noise sample generation: averaging training batch; 
Noise sample source: input images. 

RF 
Output: without complementary super-class, and 

without noise extra-class. 

NBRF – SF 
Full output; 
Noise sample generation: statistical surrogate; 

Noise sample source: feature vectors. 

NBRF – SI  

Full output; 

Noise sample generation: statistical surrogate; 
Noise sample source: input images. 

NBRF – TF 

Full output; 

Noise sample generation: averaging training set; 
Noise sample source: feature vectors. 

NBRF – TI 

Full output; 

Noise sample generation: averaging training set; 
Noise sample source: input images. 

NBRF – BF 

Full output; 

Noise sample generation: averaging training batch; 
Noise sample source: feature vectors. 

NBRF – BI 

Full output; 

Noise sample generation: averaging training batch; 
Noise sample source: input images. 

CNN – FF Conventional convolutional and feed-forward layers. 

 
As discussed on the labeling process, target values are 

binary, i.e., �79(�) ∈ �0,1
. The cross-entropy function of the 
NBRF is the following: 

>?@AB (�) = 8 073 ⋅ ℎ7(�)7D7E ,7E̅,7F
 

(5) 

where 07  is the weight used for class balancing. The weight 07  
is calculated according to the cardinality ratio between each i-
th class and the related i-th superclass or the noise extra-class, 
in order to tackle class unbalancing, as follows:  

07 = G |C�| |C�|⁄ "# � ∈ C� |C�| |C��|⁄ "# � ∈ C� � |C�| |C�|⁄ "# � ∈ C�
 (6) 

Indeed, batch size and number of extra-class samples per 
batch are two independent hyperparameters. As a consequence, 
the number of generated samples can lead to unbalanced 
training. In order to balance the impact of labelled and classless 
images, the losses corresponding to each type of image are 
weighted in Formula (5). In the case of RF and NBRF2, Formula 
(5) and Formula (6) must be simplified, by removing the noise 

extra-class and the complementary super class, respectively. In 
particular, the denominator value of Formula (5) becomes 2, and 
the number of cases in Formula (6) become two. 

III. EXPERIMENTAL STUDIES 

To investigate the effectiveness of the NBRF architecture, 
some experiments have been carried out on three real-world 
problems used for benchmarking machine learning algorithms: 
MNIST [12], Fashion-MNIST [14], and K-MNIST [15]. 
MNIST is made of handwritten digits images, Fashion-MNIST 
is a dataset of fashion article images, whereas K-MNIST is made 
of handwritten Japanese characters. All the datasets are made by 
a training set of 60,000 examples, and a test set of 10,000 
examples. Each example is a 28×28 image, with pixels in 0–255 
grayscale values, associated with a class label of 10 possible 
classes. The task is to classify a given image into one of such 10 
classes. 

A. Architectural settings 

All the types of architecture listed in Table I have been 
developed and compared. A repository with the source code and 
experimental data has been publicly released to facilitate 
reproducibility and widespread adoption [11]. 

To guarantee a fair comparison, the convolutional layers are 
identical for all the networks. The classification layers have been 
structured so as to have a similar number of weights. Table II 
shows the number of weights in the FF layers for each type of 
architecture. The first FF layer is equipped with the same 
number of weights, whereas the second FF layer is slightly 
different because of the structural differences in the number of 
outputs. 

TABLE II.  NUMBER OF WEIGHTS IN THE FF LAYERS 

Architecture 1st FF Layer 2nd FF layer Total 

NBRF2 or RF 4.000 M 10 K 4.010 M 

NBRF  4.000 M 15 K 4.015 M 

CNN – FF 4.000 M 50 K 4.050 M 

 

More specifically, the convolutional subnetwork scales the 
input through a batch normalization layer, and then it applies 
two iterations of convolution, nonlinearity, and pooling layers. 

Both convolution layers use 5×5 kernels. The first convolution 
produces an output of 20 channels, while the second one 
produces one of 50. The nonlinearity function used is a Leaky 

ReLU. The pooling operation applies max pooling over 2×2 
subregions. The resulting output is flattened, and corresponds 
to 800 values per image.  

The ten NBRFs are made up of two FF layers. The first layer 
is equipped with 500 units. According to Table II, the number 

of connections of the first layer is then 800×500=400K per 
NBRF. The second layer of an NBRF is made by 3 nodes, 

which become 2 nodes for NBRF2 and RF. Overall, 500×3 = 

15K for NBRF, and 500×2 = 10K for NBRF2 and RF, according 
to Table II. The first layer is followed by a nonlinearity layer 



that applies the Leaky ReLU, while the second layer is followed 
by a softmax layer to normalize the outputs.  

The CNN – FF network has two FF layers, equipped with 
5000 and 10 nodes, respectively. According to Table II, the 

total number of weights is 800×5000 + 5000×10 = 40M + 50K. 
The Adaptive Moment Estimation (Adam) method [16] has 

been used to compute adaptive learning rates for each 
parameter of the gradient descent optimization algorithms, 
carried out with batch method [17]. Early stopping is used as 
stopping criterion for the training loop. The validation loss is 
monitored using a patience value of 3. The optimum value 
found for ℳ is 0.9. Each architecture has been trained 10 times 
to get average performance measurements and confidence 
intervals. 

B. Analysis of Results 

Fig. 2 shows the classification capabilities of the different 
network architectures. Let us assume that the training set and 
the corresponding test set belong to the same dataset. Although 
CNN-FF has been equipped with 35-40K additional weights, it 
is apparent that there are NBRF models, such as NBRF-TI, 
NBRF-SI, and NBRF2-SI, performing better than the 
conventional CNN-FF on the three datasets. 

 

Fig. 2. Average and confidence intervals of the classification accuracy, for 
different architecture variants over different datasets. 

The impressive advantage of the proposed architecture is 
clear when considering robustness. Let us consider the CNN – 
FF. Fig. 3 shows the percentage of samples classified as noise 
extra-class, i.e., samples whose membership to all classes is 
lower than ℳ  = 0.9. For each cell, a related CNN – FF 
architecture has been trained with the dataset in the ordinates 
and tested with the dataset in the abscissae. As expected, 
diagonal cells achieve a classification close to zero, because the 
training and testing datasets are the same. Thus, no extra-class 
samples are available for that cells. However, the Figure clearly 
shows that the architecture is unable to adequately recognize 
extra-class samples in the other cells. Indeed, a very high noise 
percentage is expected to be found in non-diagonal cells, in 
which the architecture has been trained with a dataset and tested 
with a completely different dataset. However, the non-diagonal 
cells show a very low noise percentage, of about 8-16%. Fig. 4 
and Fig. 5 show the same type of matrix for NBRF2–TI and 

NBRF2–TF. Here, it can be easily noted that the NBRF-based 
architecture sensibly outperforms the conventional CNN-FF in 
terms of robustness. Indeed, both NBRF2–TI and NBRF2–TF 
are able to recognize a considerable fraction of another dataset 
as a set of noise extra-class samples.  

Finally, Fig. 6 shows the performance of an RF net. It is 
worth noting that without noise boosting there is a noticeable 
decrease of performance. This proves the effectiveness of the 
proposed approach. 

 

 
Fig. 3. CNN-FF net: percentage of samples classified as noise extra-class, 
with training and testing sets on the ordinates and abscissae, respectively.  

IV. CONCLUSION AND FUTURE WORK 

In this paper, the concept of modular NBRFs has been 
discussed and developed, as an alternative to a monolithic FF 
classification layer. The proposed architecture is characterized 
by the capability of detecting extra-class samples, thanks to 
noise boosting.  

With respect to an FF classification layer having the same 
number of parameters, a classification layer of NBRFs is more 
accurate and robust. It allows by design to recognize noise 
extra-class samples. For this purpose, noise samples are 
artificially generated at training time via image transformation 
and noise addition.  

Experimental results have been carried out on MNIST, 
KMNIST and FMNIST datasets, to compare the FF and the 
NBRF layers, with different extra-class generation techniques.  

 Results show the high potential of the proposed approach, 
encouraging further comparative research. The source code has 
been publicly released to facilitate reproducibility and 
widespread adoption. 
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Fig. 4. NBRF2 – TI net: percentage of samples classified as noise extra-class, 
with training and testing sets on the ordinates and abscissae, respectively.  

 
Fig. 5. NBRF2 – TF net: percentage of samples classified as noise extra-class, 
with training and testing sets on the ordinates and abscissae, respectively. 

 
Fig. 6. RF net: percentage of samples classified as noise extra-class, with 
training and testing sets on the ordinates and abscissae, respectively. 
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