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Abstract: Mathematics is an effective testbed for measuring the problem-solving ability of machine learning models. 

The current benchmark for deep learning-based solutions is grade school math problems: given a natural 

language description of a problem, the task is to analyse the problem, exploit heuristics generated from a very 

large set of solved examples, and then generate an answer. In this paper, a descendant of the third generation 

of Generative Pre-trained Transformer Networks (GPT-3) is used to develop a zero-shot learning approach, 

to solve this problem. The proposed approach shows that coding based problem-solving is more effective than 

the natural language reasoning based one. Specifically, the architectural solution is built upon OpenAI Codex, 

a descendant of GPT-3 for programming tasks, trained on public GitHub repositories, the world’s largest 

source code hosting service. Experimental results clearly show the potential of the approach: by exploiting 

the Python as programming language, proposed pipeline achieves the 18.63% solve rate against the 6.82% of 

GPT-3. Finally, by using a fine-tuned verifier, the correctness of the answer can be ranked at runtime, and 

then improved by generating a predefined number of trials. With this approach, for 10 trials and an ideal 

verifier, the proposed pipeline achieves 54.20% solve rate.   

 

1 INTRODUCTION 

In the last years, Natural Language Processing (NLP) 

researchers showed the great potential of Deep Neural 

Networks (DNN) to perform language-based problem 

solving. Special categories of DNN called 

Transformers, achieved unprecedented results in 

question answering, reading comprehension, 

sentiment analysis, summarization, translation and so 

on (Wang, 2019). Systems such as BERT 

(Bidirectional Encoder Representations from 

Transformers) (Devlin, 2018) have been pre-trained 

with generic corpora such as the Wikipedia Corpus. 

Then, given a specific domain task, some layers of 

such networks can be further trained (i.e., fine-tuned) 

with a domain dataset, achieving a substantial gain. 
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Nevertheless, task-specific fine-tuning can be costly, 

because it involves corpora of thousands or tens of 

thousands of examples. For this reason, in this 

research a particular focus is given to “zero-shot” 

training, i.e., the capability of adapting such networks 

to lateral domains with unseen problems classes. 

Specifically, with the Generative approaches, 

language models are purposely designed and trained 

to generate feature representation of unseen classes. 

Since their introduction, the Generative Pre-

trained Transformer (GPT) models have shown good 

zero-shot capabilities in various tasks (Radford, 

2019). GPT models are trained using a task-agnostic 

loss function, whose training objective is to predict 

the next word in a text given all the previous words of 

the same text. The most recent and state-of-the-art 

GPT model is GPT-3 (Brown, 2020).  Zero-shot 



GPT-3 achieved similar or even higher performances 

in various NLP tasks compared with other fine-tuned 

state-of-the-art models. Even if GPT models are very 

good in NLP tasks, they fail when prompted with 

tasks which involve performing mathematical 

operations (Hendrycks, 2021). Indeed, the 175 

billions parameters of GPT-3 fail to solve grade 

school level math problems (Cobbe, 2021).  

Very recently, the research laboratory OpenAI has 

released Codex, a GPT-3 descendant fine-tuned on 

publicly available code from GitHub (Chen, 2021). 

Given a Python docstring (a string literal expressing 

the functional requirements according to a standard 

syntax), Codex was able to correctly synthesize 

programs in almost 30% of the cases of the 

HumanEval benchmark (a dataset of hand-written 

code completion problems). In contrast, GPT-3 was 

never able to solve this problem at all (Chen, 2021).  

In this paper it is argued that, given a grade school 

mathematical problem, to ask Codex to synthesize the 

Python code for the problem and then run it to obtain 

the answer, achieves better performance than to ask 

GPT-3 to directly synthesize the answer. To verify 

this hypothesis, a zero-shot Codex-based pipeline has 

been designed, compared with GPT-3, by using the 

Grade School Math 8K (GSM8K) benchmark 

(Cobbe, 2021). 

This paper is organized as follows. Section 2 

covers the design of the proposed approach. 

Experimental results are discussed in Section 3. 

Finally, Section 4 draws conclusions and future work. 

2 ARCHITECTURAL DESIGN 

Figure 1 shows a scenario of GSM8K problem with 

related solutions. In the first cell (P), the problem 

formulation in natural language is shown. The second 

cell (S) shows the true solution to the problem. The 

third cell (SC) shows the solution provided by Codex, 

and finally the fourth cell (SG) shows the solution 

provided by GPT-3. In the scenario, both SC ad SG are 

correct. Specifically, in SC the solution (3) is provided 

by a Python interpreter executing the code provided 

by Codex.  

In general, the interpreter can detect an error in the 

code: invalid program, exception raised or even halts. 

Another case of detectable error occurs if the code 

does not provide any solution at the end of the 

execution, or after a predefined time (e.g. an 

indefinite loop). In case of detectable error, Codex is 

automatically asked to provide another solution to the 

same problem. As an overall result, it is then 

supposed that a value SC is always provided after 

some trial. 

From the operational point of view, Figure 2 

shows the use case related to GPT-3:  

1) The network input, which is made by the string 

“Question:” followed by the user input string, a 

newline character and the string “Answer:” is 

used to generate new tokens until the newline 

character is generated 

2) the generated tokens are then shown after the 

string “Answer:”.  

 
P A robe takes 2 bolts of blue fiber and half that 

much white fiber.  How many bolts in total does it 

take? 

S 3 

SC def robe(blue, white): 

total = blue + white 

return total 

robe(2,1) 

3 

SG We can do this one in our heads because we know 

the answer is 2.5. We know that the robe takes 2 

bolts of blue and half that much white, or 1.5. So 

we can multiply 2 and 1.5to get 3. So the robe takes 

3 bolts of fiber 

Figure 1: Scenario of a GSM8K problem (P), with the true 

solution (S), the solution provided by Codex (SC), and the 

solution provided by GPT-3 (SG). 

Figure 3 shows the use case related to Codex: 

1) the network input is the string “#Write a Python 

function that solves the problem:” followed by the 

input question. The character “#” denotes a 

Python comment, i.e., a line expressed in natural 

language that is not executed by the interpreter. 

The input question is completed with a newline 

character;  

2) the newline character is followed by the keyword 

“def” which denotes the beginning of a function. 

The network is then asked to generate new tokens 

until two consecutive newline characters are 

generated. This is a convention for the end of a 

small Python function 

3) subsequently, the text related to step 1 and step 2 

is followed by the automatically generated text: 

“#Call the function … to solve the problem …”, 

where the name of the function is the word 

generated at step 2 after the keyword “def”, and 

the problem is the initial input question provided 

at step 1 

4) the overall text generated at step 1, step 2, and step 

3 is then sent to Codex, which generates a new 

line of tokens with a Python call to the function, 



including also the actual parameters, until the 

newline token is generated 

5) the function call is then added to the Python code, 

and sent to the interpreter, which finally provides 

the numerical result. 

 
1 Question: "A robe takes…" 

2 Answer: "We can do this…" 

Figure 2: Use case of GPT-3 problem solving. 

1 #Write a Python function that 

solves the problem: "A robe takes…" 

2 def robe … 

3 #Call the function robe to solve 

the problem "A robe takes…" 

4 robe(2,1) 

5 3 

Figure 3: Use case of Codex problem solving. 

Figure 4 shows the overall operational workflow, 

using the BPMN standard. Specifically, circles, 

rounded rectangles, and diamonds represent events, 

tasks and decision/merge nodes, respectively. The 

overall process starts on the top-left, with the 

Application Controller (AC) providing a user 

interface for the input problem. Then, the AP 

formulates the problem for Codex, which in turn 

generates the Python function. Subsequently, the AP 

formulates the function call for Codex, which 

generate it. Finally, the AP asks the Python 

Interpreter (PI) for code execution. After completing 

the code execution, or after a timeout, the PI provides 

the results to the AC. If a detectable error occurs, the 

AP asks a newly generated function to restart, 

otherwise the AP outputs the solution. 

3 EXPERIMENTAL RESULTS 

The proposed approach, called Math-Codex Zero 

Shot Learning (MC-ZSL), has been implemented, 

tested, and publicly released on the GitHub platform 

(Galatolo, 2021), to foster its application on various 

research environments. 

The MC-ZSL has been compared with the GPT-

3-ZSL, using the test set of the GSM8K benchmark 

corpus. Overall, GSM8K consists of 8.5 thousand 

high quality grade school math problems, created by 

human problem writers (Cobbe, 2021). Specifically, 

the test set is made by 1319 problems. The math 

problems require between 2 and 8 steps to be solved. 

The solutions involve performing a sequence of 

elementary calculations using basic arithmetic 

operations. An excerpt of representative problems is 

published on (Galatolo, 2021). 

Overall, a detectable error has been found in the 

7.99% of cases: 3.73% invalid program, 4.19% 

exception raised, and 0.07% halt). The final 

percentage of correct solutions is 18.63% for MC-

ZSL against 6.82% of GPT-3-ZSL, which 

demonstrate the effectiveness of the proposed 

approach. 

 

Figure 4: A BPMN operational workflow of the proposed 

solution, based on application controller, Codex, and 

Python interpreter. 



Very recently, Cobbe et al. (2021) proposed to 

train a verifier to evaluate the correctness of 

generated solutions. In general, verification is a 

simpler task with respect to generation.  

The idea is to verify model generated solutions at 

test time. Since the verifier outputs a probability that 

the solution is correct, multiple trials of the same 

problem can be carried out. Each solution can be 

ranked with the verifier, and then the solution with the 

highest verifier score can be returned.  

Figure 5 shows the percentage of correct solution 

against the number of trials, provided by the MC-

ZSL. It can be considered the performance with an 

ideal verifier (i.e., providing 100% of probability that 

the solution is correct). 

 For one trial, the percentage is 18.63%, but with 

two and three trials is 27.56 and 33.33%, respectively. 

To show the potential of this approach, it can be noted 

that with ten trials the percentage becomes 54.20%. 

 

 

Figure 5: Percentage of MC-ZSL solve rate against number 

of trials. 

4 CONCLUSIONS 

This work explores and measures the effectiveness of 

the most recent deep learning models for solving 

grade school math tasks described in natural 

language. The proposed approach shows that 

problem-solving based on computer coding is more 

effective than problem-solving based on natural 

language reasoning. 

A pipelined solution is designed, based on 

OpenAI Codex. Experimental results clearly show the 

potential of the approach: the Codex achieves 18.63% 

solve rate against the 6.82% of GPT-3. 

Further improvements can be achieved by using 

verifiers. The proposed approach has been 

implemented, tested, and publicly released on the 

GitHub platform, to foster its application on various 

research environments. An excerpt of significant 

cases has been included in appendix. 
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APPENDIX 

It follows some selected sample problems (P) from 

the GSM8K data set, the related solution (S), the 

related solution provided by MC-ZSL (SC), and 

finally the solution provided by GPT-3-ZSL (SG). 

Problem N.2 

P Josh decides to try flipping a house. He buys a 

house for $80,000 and then puts in $50,000 in 

repairs. This increased the value of the house by 

150%. How much profit did he make? 

S 70,000 

SC def house_flipper(house_value, 

repair_cost): 

profit = (1.5∗house_value) – 
repair_cost 

return profit 

house_flipper(80000,50000) 

70000 

SG $20,000. He sold it for$120,000. 

$80,000 -$50,000 = $30,000. 

$30,000 /$80,000 = $0.375. 

$0.375 x 150% = $0.50. 

$30 

 

Problem N.3 

P James decides to run 3 sprints 3 times a week. He 

runs 60 meters each sprint. How many total meters 

does he run a week? 

S 540 

SC def total_meters(sprint_distance, 

num_sprints, num_weeks): 

return sprint_distance ∗ 

num_sprints ∗ num_weeks 
total_meters(60,3,3) 

540 

SG James runs 60 meters 3 times a week. He runs 180 

meters total a week. 

 

Problem N.4 

P Every day, Wendi feeds each of her chickens three 

cups of mixed chicken feed, containing seeds, 

mealworms and vegetables to help keep them 

healthy. She gives the chickens their feed in three 

separate meals. In the morning, she gives her flock 

of chickens 15 cups of feed. In the afternoon, she 

gives her chickens another 25 cups of feed. How 

many cups of feed does she need to give her 

chickens in the final meal of the day if the size of 

Wendi’s flock is 20 chickens? 

S 20 

SC def chicken_feed( 

number_of_chickens, 

morning_feed, 

afternoon_feed): 

return morning_feed + afternoon_ 

feed – number_of_chickens 

chicken_feed(20, 15, 25) 

20 

SG 15 + 25 + X = 60 

Problem N.5 

P Janet’s ducks lay 16 eggs per day. She eats three 

for breakfast every morning and bakes muffins for 

her friends every day with four. She sells the 

remainder at the farmers’ market daily for $2 per 

fresh duck egg. How much in dollars does she 

make every day at the farmers’ market? 

S 18 

SC def problem_1(num_ducks, 

num_ducks_eaten, 

num_muffins_made, 

num_muffins_sold): 

return (num_ducks∗16)− 
(num_ducks_eaten∗3)− 
(num_muffins_made− 

Num_muffins_sold)∗2 
problem_1(3,1,4,3) 

43 

SG $3.20 

 

 


