
Zero-shot mathematical problem solving via

Generative Pre-trained Transformers

Federico A. Galatolo1 a, Mario G.C.A. Cimino1 b and Gigliola Vaglini1 c
1Department of Information Engineering, University of Pisa, Largo L. Lazzarino 1, Pisa, Italy

{federico.galatolo, mario.cimino, gigliola.vaglini}@ing.unipi.it

Keywords: Deep Learning, Natural Language Processing, Generative Pre-trained Transformers, Zero-shot Learning,

Mathematical Problem Solving.

Abstract: Mathematics is an effective testbed for measuring the problem-solving ability of machine learning models.

The current benchmark for deep learning-based solutions is grade school math problems: given a natural

language description of a problem, the task is to analyse the problem, exploit heuristics generated from a very

large set of solved examples, and then generate an answer. In this paper, a descendant of the third generation

of Generative Pre-trained Transformer Networks (GPT-3) is used to develop a zero-shot learning approach,

to solve this problem. The proposed approach shows that coding based problem-solving is more effective than

the natural language reasoning based one. Specifically, the architectural solution is built upon OpenAI Codex,

a descendant of GPT-3 for programming tasks, trained on public GitHub repositories, the world’s largest

source code hosting service. Experimental results clearly show the potential of the approach: by exploiting

the Python as programming language, proposed pipeline achieves the 18.63% solve rate against the 6.82% of

GPT-3. Finally, by using a fine-tuned verifier, the correctness of the answer can be ranked at runtime, and

then improved by generating a predefined number of trials. With this approach, for 10 trials and an ideal

verifier, the proposed pipeline achieves 54.20% solve rate.

1 INTRODUCTION

In the last years, Natural Language Processing (NLP)

researchers showed the great potential of Deep Neural

Networks (DNN) to perform language-based problem

solving. Special categories of DNN called

Transformers, achieved unprecedented results in

question answering, reading comprehension,

sentiment analysis, summarization, translation and so

on (Wang, 2019). Systems such as BERT

(Bidirectional Encoder Representations from

Transformers) (Devlin, 2018) have been pre-trained

with generic corpora such as the Wikipedia Corpus.

Then, given a specific domain task, some layers of

such networks can be further trained (i.e., fine-tuned)

with a domain dataset, achieving a substantial gain.

a https://orcid.org/0000-0001-7193-3754
b https://orcid.org/0000-0002-1031-1959
c https://orcid.org/0000-0003-1949-6504

Nevertheless, task-specific fine-tuning can be costly,

because it involves corpora of thousands or tens of

thousands of examples. For this reason, in this

research a particular focus is given to “zero-shot”

training, i.e., the capability of adapting such networks

to lateral domains with unseen problems classes.

Specifically, with the Generative approaches,

language models are purposely designed and trained

to generate feature representation of unseen classes.

Since their introduction, the Generative Pre-

trained Transformer (GPT) models have shown good

zero-shot capabilities in various tasks (Radford,

2019). GPT models are trained using a task-agnostic

loss function, whose training objective is to predict

the next word in a text given all the previous words of

the same text. The most recent and state-of-the-art

GPT model is GPT-3 (Brown, 2020). Zero-shot

GPT-3 achieved similar or even higher performances

in various NLP tasks compared with other fine-tuned

state-of-the-art models. Even if GPT models are very

good in NLP tasks, they fail when prompted with

tasks which involve performing mathematical

operations (Hendrycks, 2021). Indeed, the 175

billions parameters of GPT-3 fail to solve grade

school level math problems (Cobbe, 2021).

Very recently, the research laboratory OpenAI has

released Codex, a GPT-3 descendant fine-tuned on

publicly available code from GitHub (Chen, 2021).

Given a Python docstring (a string literal expressing

the functional requirements according to a standard

syntax), Codex was able to correctly synthesize

programs in almost 30% of the cases of the

HumanEval benchmark (a dataset of hand-written

code completion problems). In contrast, GPT-3 was

never able to solve this problem at all (Chen, 2021).

In this paper it is argued that, given a grade school

mathematical problem, to ask Codex to synthesize the

Python code for the problem and then run it to obtain

the answer, achieves better performance than to ask

GPT-3 to directly synthesize the answer. To verify

this hypothesis, a zero-shot Codex-based pipeline has

been designed, compared with GPT-3, by using the

Grade School Math 8K (GSM8K) benchmark

(Cobbe, 2021).

This paper is organized as follows. Section 2

covers the design of the proposed approach.

Experimental results are discussed in Section 3.

Finally, Section 4 draws conclusions and future work.

2 ARCHITECTURAL DESIGN

Figure 1 shows a scenario of GSM8K problem with

related solutions. In the first cell (P), the problem

formulation in natural language is shown. The second

cell (S) shows the true solution to the problem. The

third cell (SC) shows the solution provided by Codex,

and finally the fourth cell (SG) shows the solution

provided by GPT-3. In the scenario, both SC ad SG are

correct. Specifically, in SC the solution (3) is provided

by a Python interpreter executing the code provided

by Codex.

In general, the interpreter can detect an error in the

code: invalid program, exception raised or even halts.

Another case of detectable error occurs if the code

does not provide any solution at the end of the

execution, or after a predefined time (e.g. an

indefinite loop). In case of detectable error, Codex is

automatically asked to provide another solution to the

same problem. As an overall result, it is then

supposed that a value SC is always provided after

some trial.

From the operational point of view, Figure 2

shows the use case related to GPT-3:

1) The network input, which is made by the string

“Question:” followed by the user input string, a

newline character and the string “Answer:” is

used to generate new tokens until the newline

character is generated

2) the generated tokens are then shown after the

string “Answer:”.

P A robe takes 2 bolts of blue fiber and half that

much white fiber. How many bolts in total does it

take?

S 3

SC def robe(blue, white):

total = blue + white

return total

robe(2,1)

3

SG We can do this one in our heads because we know

the answer is 2.5. We know that the robe takes 2

bolts of blue and half that much white, or 1.5. So

we can multiply 2 and 1.5to get 3. So the robe takes

3 bolts of fiber

Figure 1: Scenario of a GSM8K problem (P), with the true

solution (S), the solution provided by Codex (SC), and the

solution provided by GPT-3 (SG).

Figure 3 shows the use case related to Codex:

1) the network input is the string “#Write a Python

function that solves the problem:” followed by the

input question. The character “#” denotes a

Python comment, i.e., a line expressed in natural

language that is not executed by the interpreter.

The input question is completed with a newline

character;

2) the newline character is followed by the keyword

“def” which denotes the beginning of a function.

The network is then asked to generate new tokens

until two consecutive newline characters are

generated. This is a convention for the end of a

small Python function

3) subsequently, the text related to step 1 and step 2

is followed by the automatically generated text:

“#Call the function … to solve the problem …”,

where the name of the function is the word

generated at step 2 after the keyword “def”, and

the problem is the initial input question provided

at step 1

4) the overall text generated at step 1, step 2, and step

3 is then sent to Codex, which generates a new

line of tokens with a Python call to the function,

including also the actual parameters, until the

newline token is generated

5) the function call is then added to the Python code,

and sent to the interpreter, which finally provides

the numerical result.

1 Question: "A robe takes…"

2 Answer: "We can do this…"

Figure 2: Use case of GPT-3 problem solving.

1 #Write a Python function that

solves the problem: "A robe takes…"

2 def robe …

3 #Call the function robe to solve

the problem "A robe takes…"

4 robe(2,1)

5 3

Figure 3: Use case of Codex problem solving.

Figure 4 shows the overall operational workflow,

using the BPMN standard. Specifically, circles,

rounded rectangles, and diamonds represent events,

tasks and decision/merge nodes, respectively. The

overall process starts on the top-left, with the

Application Controller (AC) providing a user

interface for the input problem. Then, the AP

formulates the problem for Codex, which in turn

generates the Python function. Subsequently, the AP

formulates the function call for Codex, which

generate it. Finally, the AP asks the Python

Interpreter (PI) for code execution. After completing

the code execution, or after a timeout, the PI provides

the results to the AC. If a detectable error occurs, the

AP asks a newly generated function to restart,

otherwise the AP outputs the solution.

3 EXPERIMENTAL RESULTS

The proposed approach, called Math-Codex Zero

Shot Learning (MC-ZSL), has been implemented,

tested, and publicly released on the GitHub platform

(Galatolo, 2021), to foster its application on various

research environments.

The MC-ZSL has been compared with the GPT-

3-ZSL, using the test set of the GSM8K benchmark

corpus. Overall, GSM8K consists of 8.5 thousand

high quality grade school math problems, created by

human problem writers (Cobbe, 2021). Specifically,

the test set is made by 1319 problems. The math

problems require between 2 and 8 steps to be solved.

The solutions involve performing a sequence of

elementary calculations using basic arithmetic

operations. An excerpt of representative problems is

published on (Galatolo, 2021).

Overall, a detectable error has been found in the

7.99% of cases: 3.73% invalid program, 4.19%

exception raised, and 0.07% halt). The final

percentage of correct solutions is 18.63% for MC-

ZSL against 6.82% of GPT-3-ZSL, which

demonstrate the effectiveness of the proposed

approach.

Figure 4: A BPMN operational workflow of the proposed

solution, based on application controller, Codex, and

Python interpreter.

Very recently, Cobbe et al. (2021) proposed to

train a verifier to evaluate the correctness of

generated solutions. In general, verification is a

simpler task with respect to generation.

The idea is to verify model generated solutions at

test time. Since the verifier outputs a probability that

the solution is correct, multiple trials of the same

problem can be carried out. Each solution can be

ranked with the verifier, and then the solution with the

highest verifier score can be returned.

Figure 5 shows the percentage of correct solution

against the number of trials, provided by the MC-

ZSL. It can be considered the performance with an

ideal verifier (i.e., providing 100% of probability that

the solution is correct).

 For one trial, the percentage is 18.63%, but with

two and three trials is 27.56 and 33.33%, respectively.

To show the potential of this approach, it can be noted

that with ten trials the percentage becomes 54.20%.

Figure 5: Percentage of MC-ZSL solve rate against number

of trials.

4 CONCLUSIONS

This work explores and measures the effectiveness of

the most recent deep learning models for solving

grade school math tasks described in natural

language. The proposed approach shows that

problem-solving based on computer coding is more

effective than problem-solving based on natural

language reasoning.

A pipelined solution is designed, based on

OpenAI Codex. Experimental results clearly show the

potential of the approach: the Codex achieves 18.63%

solve rate against the 6.82% of GPT-3.

Further improvements can be achieved by using

verifiers. The proposed approach has been

implemented, tested, and publicly released on the

GitHub platform, to foster its application on various

research environments. An excerpt of significant

cases has been included in appendix.

ACKNOWLEDGEMENTS

We thank OpenAI for giving us free and unlimited

access to Codex for running our experiments. Work

supported by the Italian Ministry of University and

Research (MUR) in the framework of the CrossLab

project (Departments of Excellence), and in the

framework of the FISR 2019 Programme, under

Grant No. 03602 of the project “SERICA”.

REFERENCES

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,

J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,

Askell, A. & Agarwal, S. (2020). Language models are

few-shot learners. arXiv preprint arXiv:2005.14165.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O.,

Kaplan, J., Edwards H., Burda Y., Joseph N., Brockman

G., Ray A. et al. (2021). Evaluating large language

models trained on code. arXiv preprint

arXiv:2107.03374.

Cobbe, K., Kosaraju, V., Bavarian, M., Hilton, J., Nakano,

R., Hesse, C., & Schulman, J. (2021). Training verifiers

to solve math word problems. arXiv preprint

arXiv:2110.14168.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018).

Bert: Pre-training of deep bidirectional transformers for

language understanding. arXiv preprint

arXiv:1810.04805.

Galatolo, F.A. (2021). Math-codex repository on GitHub,

https://github.com/galatolofededico/math-codex.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,

S., Tang, E., Song, D. & Steinhardt, J. (2021).

Measuring mathematical problem solving with the

MATH dataset. arXiv preprint arXiv:2103.03874.

Radford, A., Wu, J., Amodei, D., Amodei, D., Clark, J.,

Brundage, M., & Sutskever, I. (2019). Better language

models and their implications. OpenAI Blog

https://openai. com/blog/better-language-models, 1, 2.

Wang A., Pruksachatkun Y., Nangia N., Singh A., Michael

J., Hill F., Levy O., S. R. & Bowman, S. R. (2019).

Superglue: A stickier benchmark for general-purpose

language understanding systems. arXiv preprint

arXiv:1905.00537.

APPENDIX

It follows some selected sample problems (P) from

the GSM8K data set, the related solution (S), the

related solution provided by MC-ZSL (SC), and

finally the solution provided by GPT-3-ZSL (SG).

Problem N.2

P Josh decides to try flipping a house. He buys a

house for $80,000 and then puts in $50,000 in

repairs. This increased the value of the house by

150%. How much profit did he make?

S 70,000

SC def house_flipper(house_value,

repair_cost):

profit = (1.5∗house_value) –
repair_cost

return profit

house_flipper(80000,50000)

70000

SG $20,000. He sold it for$120,000.

$80,000 -$50,000 = $30,000.

$30,000 /$80,000 = $0.375.

$0.375 x 150% = $0.50.

$30

Problem N.3

P James decides to run 3 sprints 3 times a week. He

runs 60 meters each sprint. How many total meters

does he run a week?

S 540

SC def total_meters(sprint_distance,

num_sprints, num_weeks):

return sprint_distance ∗

num_sprints ∗ num_weeks
total_meters(60,3,3)

540

SG James runs 60 meters 3 times a week. He runs 180

meters total a week.

Problem N.4

P Every day, Wendi feeds each of her chickens three

cups of mixed chicken feed, containing seeds,

mealworms and vegetables to help keep them

healthy. She gives the chickens their feed in three

separate meals. In the morning, she gives her flock

of chickens 15 cups of feed. In the afternoon, she

gives her chickens another 25 cups of feed. How

many cups of feed does she need to give her

chickens in the final meal of the day if the size of

Wendi’s flock is 20 chickens?

S 20

SC def chicken_feed(

number_of_chickens,

morning_feed,

afternoon_feed):

return morning_feed + afternoon_

feed – number_of_chickens

chicken_feed(20, 15, 25)

20

SG 15 + 25 + X = 60

Problem N.5

P Janet’s ducks lay 16 eggs per day. She eats three

for breakfast every morning and bakes muffins for

her friends every day with four. She sells the

remainder at the farmers’ market daily for $2 per

fresh duck egg. How much in dollars does she

make every day at the farmers’ market?

S 18

SC def problem_1(num_ducks,

num_ducks_eaten,

num_muffins_made,

num_muffins_sold):

return (num_ducks∗16)−
(num_ducks_eaten∗3)−
(num_muffins_made−

Num_muffins_sold)∗2
problem_1(3,1,4,3)

43

SG $3.20

