Enhancing land subsidence awareness
via InSAR data and Deep Transformers
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Abstract—The increasing availability of Satellite technology
for Earth observation enables the monitoring of land subsidence,
achieving large-scale and long-term situation awareness for
supporting various human activities. Nevertheless, even with the
most-recent Interferometric Synthetic Aperture Radar (InSAR)
technology, one of the main limitations is signal loss of coherence.
This paper introduces a novel method and tool for increasing the
spatial density of the surface motion samples. The method is based
on Transformers, a machine learning architecture with dominant
performance, low calibration cost and agnostic method. This paper
covers development and experimentation on four-years surface
subsidence (2017-2021) occurring in two Italian regions, Emilia-
Romagna and Tuscany, due to ground-water over-pumping using
Sentinel-1 data processed with P-SBAS (Parallel Small Baseline
Subset) time-series analysis. Experimental results clearly show the
potential of the approach. The developed system has been publicly
released to guarantee its reproducibility and the scientific
collaboration.
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l. INTRODUCTION AND BACKGROUND

SAR (Synthetic Aperture Radar) remote sensing satellites for
Earth observation are widely recognized as a key method for
monitoring our planet. SAR satellites are capable of providing
large-scale and long-term situational observations to a variety of
surface processes. In the literature, situational awareness refers
to the process of aggregating spatial-temporal variables and
measurements to raise the abstraction (i.e., semantic) level of
operational models, making them more adaptive to the global or
long-term circumstances [1][2]. Let us consider land subsidence,
that can occur both in a continuous time-progressive manner or
as a sudden sinking of the ground surface and, as it is well known
in literature, it can be caused by human activities (e.g. ground-
water over-pumping, exploitation of underground reservoirs for
oil and gas withdrawal, collapse of tailing dams) with a
significant and irreversible impact on ecosystems [3].
Concerning the ground-water over-pumping, irrigation can be
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considered as one of the main purposes. However, an inadequate
exploitation of underground water resources can lead to
irreversible phenomena, such as the deceleration of the
recharging time of an aquifer [4]. Thus, the monitoring of land
subsidence can be considered as strategic for many stakeholders
ensuring actions for environmental, socio-economic and
technological interests, as well as for policy makers promoting
sustainable practices in land and water management [4][5].

Conventional techniques of monitoring of land subsidence
occurring in areas interested by ground-water extraction use a
spatially limited sampling via piezometric levels [5], which is
often restricted to a few small areas. Moreover, in many
countries, such as Italy, most of the data collected is owned by
singular municipalities or private users. Thus, despite
anthropogenic water consumption being one of the main reasons
of anthropogenic land subsidence, detailed information at a
broad scale is often lacking [4]. In the last twenty years satellite
Interferometric Synthetic Aperture Radar (INSAR) has emerged
as a promising technology for studying and monitoring surface
motions in different fields of the Geohazards, including
subsidence in ground-water extraction. INSAR methods are
capable of obtaining measures of surface displacements with
sub-cm accuracy at an unprecedented level of spatial detail (tens
of m pixel size over hundreds of km wide areas) and temporal
resolution. Specifically, interferograms are generated by
differencing SAR images taken at different times from the same
orbital position. With Sentinel-1A/B satellites constellation, the
revisit time can be as short as 6 days [5][6].

Nevertheless, even with the most-recent missions, one of the
main limitations of INSAR is signal loss of coherence, largely
due to changes in the surface conditions between the
acquisitions. As a result, InNSAR-derived surface displacement
time-series are characterized by a low spatial density of point-
like targets, especially in non-urban areas, where vegetation and
cultivated fields can make the estimation of the surface
deformation a task not easy to solve [5].
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In the literature, many advanced processing algorithms have
been proposed to improve InSAR data, e. g. to reduce the
atmospheric effects, such as Multi-Temporal (MT-)InSAR,
Permanent Scatterer Interferometry (PSI), Small Baseline
Method (SBAS) [7]. In addition, many open-source time-series
analysis software packages have been developed, e.g. for
Sentinel-1 data SNAP, GMTSAR, STaMPS, GIANT, MintPy
[7]. As a result, many data pipeline have been developed in this
field, with different levels of efficiency in terms of parallel
computing, and with different accuracy. With the increase of
complexity of such approaches, an important design problem is
to consider their management costs, in terms of parametric
sensitivity (i.e., calibration cost), knowledge needed, reusability
on multiple application domains, and so on. Consequently,
researchers started addressing the problem via machine learning
based methods, which are well-known in the literature for the
dominant performance, the low calibration cost, and the agnostic
method [8][9].

This paper presents a novel approach to overcome
incoherence and enhance the spatial density of INSAR-derived
surface displacement time-series. The approach is based on
Transformers [10]. With respect to conventional deep learning
models for sequential data, a transformer processes sequential
input according to a self-attention mechanism, i.e., a weighting
of the significance of an input of the sequence. As a result,
parallelization during training is facilitated and made efficient
for large dataset. In addition, traditional deep learning
architectures, such as Long-Short Term Memory (LSTM) and
Convolutional Neural Networks (CNN), exhibits the so-called
vanishing / exploding gradient problem, which makes the design
and calibration very costly [11][12]. In contrast, the transformer
architecture employs exclusively attention building blocks, with
very good results with far less engineering tuning time.

The proposed system has been developed and publicly
released to guarantee its easy adoption and reproducibility [13].
Experimental studies, with a focus on Central Italy, in the
regions of Emilia-Romagna and Tuscany, have been carried out.
The proposed approach clearly shows promising results,
effectiveness and efficiency.

The paper is structured as follows. Section 1l is devoted to
materials and methods. Experimental results and discussion are
covered by Section Ill. Finally, Section IV draws conclusions.

Il. MATERIALS AND METHODS

A. InSar dataset and pre-processing

In this paper, the utilized Single Look Complex (SLC)
images, acquired in Interferometric Wide swath mode (IW),
come from the European Space Agency (ESA) Sentinel-1A/B
satellites (which work in the C-band in 12-day revisit cycle) in
both Ascending and Descending tracks. The combined use of
two acquisition geometries has been adopted in order to provide
the best identification of the components of the surface
displacement with cm-scale accuracy.

Concerning the area of study, it lies on track 117 for
Ascending and on track 168 for Descending, with a total of 211

and 261 images analyzed, respectively (Table ). Thus, the
number of interferograms processed for this study was 591 for
the ascending and 740 for the descending tracks.

TABLE I. THE SENTINEL-1 INSAR DATA INGESTION
Region Period of time Geometry Path
Emilia-Romagna 04/2017-11/2021 | Ascending 117
Emilia-Romagna 06/2017-12/2021 Descending 168
Tuscany 04/2017-06/2021 | Ascending 17
Tuscany 06/2017-12/2021 | Descending 168

Data processing was performed through the ESA’s
Geohazards Exploitation Platform (GEP). The approach used, P-
SBAS (Parallel Small BAseline Subset) Interferometry, is a
processing chain for the generation of Earth deformation time-
series and maps of the yearly mean velocity of the surface
displacement [14]. It is an implementation of the SBAS
approach, a well-established multi-temporal INSAR technique,
and it revealed to be useful also in other fields of the Geohazards,
such as the monitoring of coastal land subsidence and landslides
phenomena [15]. For this study, among all the parameters to be
set in the pre-processing step, it has been chosen 0.75 for the
threshold of the coherence, VV (Vertical, Vertical) mode for the
polarization and, finally, concerning the Digital Elevation Model
(DEM), the one coming from the Shuttle Radar Topography
Mission at 1 arcsec spatial resolution has been chosen (30
m/pixel).

B. The generation of the machine learning set

Given an area of observation, let us consider a surface
subsidence time-series generated via InSAR data pre-
processing. For each sampling time, the surface frame is made
by geolocated samples of subsidence in cm/year. As a first step,
a lattice made by 20k x 30k elements, with cell size of 100 m x
100 m, is superimposed to the frame. A sparse matrix is then
generated from the lattice by taking, for each cell, the average
subsidence. Finally, a cells mask is generated and applied by
taking the intersection of all matrices: only cell values that are
non-null in all matrices are considered as reliable subsidence
values, whereas the other values are deleted.

Given the collection of masked sparse matrices {S;}
generated, the machine learning set is generated as follows.
Select a random submatrix of 20x20 cells §2°%2° corresponding
to a 2kmx2km surface. If more than a minimum density of 100
non-null values is available in the submatrix, then a submatrix
vectorial record v is generated. To guarantee an upper limit to
the batch size, if more than 300 non-null values are available
(with respect to the total 400), only 300 of them are considered.
A vectorial record is made by the sequence of coordinates
(x;,y;) followed by the respective subsidence values z;:

V=[x, Y1 X2, Yoo X0 Vil 21, 22, 24] M)

Finally, the machine learning set is made by the collection of
vectorial records generated from the available matrices. The



training and the testing sets are made by the 80% and 20% of
randomly extracted vectorial records, respectively.

The machine learning task is a regression, i.e., to predict the
value z; by having the previous elements of the vectorial record:

X1, V1 X2) Vo weeer Xty Vir Z1y oo Ziq = Z; 2)

C. The Transformer architectures

Given the machine learning task of Formula (2), different
Transformer architectural models have been developed. For the
sake of brevity, this section summarizes such models. The
interested reader is referred to the relevant publication [10] and
to our developed code [13] for detailed information.

Let us call token an element of the vectorial record. The task
of Formula (2) is then to predict the next token of a sequence. A
first approach called Masked Language Modeling (MLM) is to
substitute part of the tokens with a mask token and to train the
network to predict the correct value of the masked tokens given
all the others. A Second approach called Causal (or
Autoregressive) Language Modeling (CLM) is to forcefully
mask all the subsequent tokens in the attention matrix and then
to predict the next token given all the previous ones. Well-known
examples of MLM and CLM are BERT (Bidirectional Encoder
Representations from Transformers)[16] and GPT (Generative
Pre-trained Transformer)[17], respectively. Since transformers
operate in the space of large real-valued vectors, the first and last
steps are called input and output embeddings, which convert the
input and output tokens into vectors, respectively. Moreover,
since a Transformer does not contain recurrence or convolution,
to allow the model to make use of the order of the sequence,
some information about the relative or absolute position of the
tokens in the sequence is injected by the positional encoding.
Fig. 1 shows a CLM architecture called Encoder-Decoder. Here,
as an input embedding of the coordinates and of the subsidence
value, linear projections R? — R?5¢ and R — R?5° are used,
respectively. Similarly, as an output embedding, a linear
projection R?5¢ — R provides the predicted subsidence. The
positional encoding is implemented by summing to each element
of the input embedding sine and cosine functions whose
wavelengths form a geometric progression from 27 to 10000-27.
Multi-head attention consists of several attention layers running
in parallel (6 layers in the proposed approach). An attention
function is a mapping of a query and a set of key-values pairs to
an output, where the query, keys, values and outputs are all
vectors. The output is the weighted sum of the values V, where
the weight assigned to each value is computed by a compatibility
function of the query Q with the corresponding key K:

Attention(Q,K,V) = softmax(QK” /\/d,)V (3)

where Q, K and V are matrices packing together multiple
queries, keys of dimension d, and values of dimension d,,,
respectively. In addition to attention sub-layers, a fully
connected feed-forward network is applied to each position
separately and identically. In the structure of Encoder-Decoder
attention layer, represented in Fig. 1, the encoder is made by a
stack of 8 identical layers, each made by a multi-head self-
attention sub-layer and a feed forward network. Moreover, the

output of each sub-layer and a residual connection are
normalized. Similarly, the Decoder is made by 8 identical layers,
each having, with respect to the Encoder, a third sub-layer
performing multi-head attention over the output of the encoder.
Finally, two approaches have been investigated: Encoder-
Encoder (trained via MLM) and Encoder-Decoder (trained via
CLM).
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Fig. 1. Architecture of the Encoder-Decoder Transformer (adapted from [10])

In addition, a different approach has been also developed,
based on Vision Transformers (ViT)[18]. ViTs are purposely
designed for computer vision tasks, as an alternative to CNNs.
The idea is to break down images in a series of patches, that are
then transformed into vectors, and considered as words in a
conventional transformer. In the approach developed in this
paper, the DEM of the area under observation has been added to
the other inputs, as an image representing the elevation data.
Two approaches are possible: ViT-Encoder (trained via MLM)
and ViT-Decoder (trained via CLM).

IIl.  EXPERIMENTAL RESULTS AND DISCUSSION

To show the effectiveness of the proposed approach,
experimental studies have been carried out with different input
dimensions. In particular, since the performance of the various
Transformers architectures are similar, for the sake of simplicity
in the following only Encoder-Decoder will be considered as a
representative. The transformer has been compared with KNN
regression, a non-parametric method that predict the output
value by using the average (weighted by distance) among the
neighborhoods. The size of the neighborhood has been set to the
25% of the training set, using cross-validation, as the size that
minimizes error. Fig. 2 and Fig. 3 show the Mean Absolute Error
(MAE) and the R-squared coefficient (i.e., the determination
coefficient) on the testing set, for different input dimensions. It
is clear that Transformers achieves promising results, up to a



MAE of .26 cm (MSE of 0.17), versus a MAE of .42 cm (MSE
of 0.44) with KNN.
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Fig. 2. Mean Absolute error of subsidence (in cm) on testing set for different
points: KNN vs Transformer.
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Fig. 3. R-square on testing set: KNN vs Transformer.

To better show the output provided by the method, a scenario
is also illustrated. Fig. 4 and Fig. 5 are maps of the yearly mean
velocity of the surface displacement (cm/year) in both ascending
and descending tracks, respectively. As it was mentioned before,
the combined use of both ascending and descending geometries
can lead to a better identification of the surface displacement
components. In this case, the maps show deformation signals
corresponding to some of the main cities in Central Italy, such
as Bologna, Modena, Reggio-Emilia and Pistoia, areas where for
both tracks the deformation pattern is a circular range increase
(ground motion away from the satellite in the Line Of Sight
(LOS)) and thus consistent with ground subsidence. Other local
deformations occur in a few limited areas on the Apennines
mountain range, likely caused by landslides. Generally, the level
of coherence is good in urban areas but at some locations loss of
coherence still occurs.

In particular, in Fig. 6, regarding the municipality of Carpi
(Emilia Romagna region) the density of the coherence points is
very low, because a lot of deformation signal is lost, in both
Ascending (a) and Descending (b) tracks, leading to a poor
interpretation of the results. On the other hand, in Fig. 6 (c)(d)

the additional surface motion samples released by the model on
the neighborhood points sensibly increases the interpretability of
the results in both Ascending and Descending geometries.
Indeed, the enhanced density of the surface displacement time-
series may help to detecting the areas affected by subsidence,
from both quantitative and qualitative point of views. As a final
outcome, Fig. 7 shows the subsidence of a single point occurring
in the same area, over the time period of analysis, for both
ascending (a) and descending (b) tracks.

I velocity map
(cm/year)

Fig. 4. Map of the yearly mean velocity of the surface displacement (cm/year)
in the LOS direction across Central Italy from Ascending Sentinel-1
(04/2017-11/2021). Background by Copernicus Land Service DEM, of 25
m/pixel resolution.
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Fig. 5. Map of the yearly mean velocity of the surface displacement (cm/year)
in the LOS direction across Central Italy from Descending Sentinel-1
(06/2017-12/2021). Background by Copernicus Land Servie DEM, 25
m/pixel resolution.

IV. CONCLUSIONS

Monitoring land subsidence can be considered strategic for
many stakeholders ensuring actions for environmental, socio-
economic and technological interests, as well as for policy
makers promoting sustainable practices in water management.
In addition to traditional ground sensors, INSAR technology can
enable an effective situational awareness supposed to provide a



Fig. 6. Scenario of pattern of surface subsidence occurring in the western side of Carpi (Italy), in the ascending (1/06/2019) and descending (18/05/2020) tracks:

(a)(b) original data, (c)(d) additional data generated by the proposed model.
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Fig. 7. Time-series of a single point within one of the most subsidence-affected areas in Carpi, occurring over the time period of analysis, both in Ascending (a)
and Descending (b) tracks.



high density of surface motion samples. However, one of the
main limitations of this technique is represented by the
interferometric coherence. To overcome this problem, this study
shows that a solution based on Transformers can achieve
promising results in terms of reconstruction of missing samples.
Future works will focus on more experimentation and validation
of the proposed method to show its effectiveness.
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