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Abstract—This paper introduces a novel method and tools
for groundwater modeling. The purpose is to perform numerical
approximations of a groundwater system, for unlocking and
paving water management problems and supporting decision-
making processes. In the last decade, Data-driven Models
(DdMs) have attracted increasing attention for their efficient
development made possible by modern remote and ground
sensing and learning technologies. With respect to conventional
Process-driven Models (PdMs), based on mathematical
modeling of core physical processes into a system of equations,
a DdM requires less human effort and process-specific
knowledge. The paper covers the design and simulation of a
deep learning modeling tool based on Convolutional Neural
Networks, integrated with the design and simulation of the
workflow based on the Business Process Model and Notation
(BPMN). Experimental results clearly show the potential of the
novel approach for scientists and policy makers.
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1. INTRODUCTION AND BACKGROUND

Groundwater modeling is a computational method to
perform numerical approximations of a groundwater system,
for addressing water management problems and supporting
decision-making processes. Typical uses of groundwater
models are what-if analysis and forecasting [1]. Groundwater
systems are affected by past, current, local, global, natural and
anthropogenic impacts. Their modeling is based on
knowledge, information and data related to a range of factors.
The observation of characteristics, the conceptual
understanding of relevant phenomena, the gathering and
monitoring of spatio-temporal data are fundamental for a deep
understanding of the system and the proxy parameters for
limiting the model uncertainty [2]. The workflow of
conventional groundwater modeling takes a long time and a
huge human time-consuming effort. In particular, a Process-
driven Model (PdM) is the formal description of the core
physical processes into a system of governing equations. The
governing equations are usually solved numerically, deriving
a discrete solution in the space and time. A PdM is based on
deep knowledge of the observed system dynamics. It requires
many additional spatial data on geological features and
hydrogeological properties of the aquifer. Large
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computational resources and long calibration activities are due
for the increasing refinement and complexity of a PdM [3].

In the last decade, Data-driven Models (DdM) have
attracted increasing attention for their optimized development
made possible by modern sensing and deep-learning
technologies. A DdM requires a different approach, based on
systematic data acquisition and low process-specific
knowledge, which is incorporated as data transformation into
features. For example, to predict groundwater levels, the input
data could be: historical piezometric data and surface water
levels, climatic data, land-use/land cover, groundwater
withdrawal and socio-economic data [4]. The generated model
captures the underlying input-output mapping without
additional expert user input. In particular, Deep Learning (DL)
an engineered machine learning, made possible by Graphical
Processing Units (GPUs), can model large data sets with a
sensibly reduced human effort with respect to conventional
machine learning. PdAM and DdM can actually be combined
for achieving a better potential. For example, an input-output
mapping can support process-oriented modeling and
understanding, as well as process-oriented modeling can
determine the best feature engineering for input-output
mapping [5]. According to this perspective, the objective of
this work is to explore and measure the effectiveness of DAM
versus PdM, developing a particular DL architecture for a case
study, as well as an operational workflow to measure the
productivity of both approaches. The selected case study is the
strategic aquifer of the Mornag Plain (Tunisia), affected by a
massive withdrawal of groundwater mainly for irrigation
purposes.

As a DL architecture, a Convolutional Neural Network
(CNN) will be developed. In a CNN, objects are recognized
via local and global features, i.¢., based on simple patterns and
on more structured patterns, respectively. In particular, a CNN
is the state-of-the art DL solution to exploit the local
topological nature of features in the groundwater maps. A
CNN has the advantage that it does not need hand-engineered
filters based on prior knowledge and human effort, with
respect to traditional data processing algorithms. This means
that by providing the set of input-output data, an optimization
(training) algorithm is able to iteratively modify the network
parameters in order to reduce the output error, i.e., to provide



a numerical value very close to the target. Moreover, the
model can be general, i.e., the network is able to effectively
provide the output for new data. A very important aspect of
DL modeling is to select the best hyperparameters of the
architecture. An example of hyperparameter is the learning
rate, i.e., the speed at which the network learns. A too small
value can produce a very long training process that could get
stuck, whereas a too large value can produce an unstable
training process. In order to guarantee the reproducibility of
the training, the most sensitive hyperparameters are not set by
hand, but using an automatic optimization algorithm.

The remainder of this paper is organized as follows:
Section II defines the workflow of ground water modeling via
PdM and DdM. Section III covers the case study. Section IV
summarizes the development of the DL architecture. Finally,
Section V draws conclusions, future challenges and works.

II. THE WORKFLOW OF GROUNDWATER MODELING

Fig. 1 shows the workflow of the groundwater PdM, in a
standard graphical representation called Business Process
Model and Notation (BPMN). The BPMN has been developed
with a solid mathematical foundation, to allow execution,
simulation, and automation of consistency checking [6]. It is
also suitable to standardize and facilitate the communication
between all stakeholders. In BPMN, an event, an activity, a
decision/merge node are represented by a circle, a rounded
box, a diamond, respectively. Sequence flow and data flow are
represented by solid and dotted arrows, respectively. Finally,
data storage is represented by a cylinder.

In particular, the workflow starts when there is a new
model to generate (event on top-left). When new data are
available, the first activity is the ingestion of hydrogeological
and geological data, made by: (i) discharge/recharge sources,
(ii) piezometric data, (iii) hydrodynamic parameters, and (iv)
acquifer geometry & boundary conditions. If the ingested data
are sufficient, two parallel tasks are carried out: on one side,
the generation of sensor data from discharge/recharge sources
and piezometric data; on the other side, the generation of
geographic map. The human icon on the task means that the
activity is managed by a human and not fully automated.
Subsequently, the generation of thematic maps via GIS
(Geographic Information System) is performed, followed by
the generation of a conceptual model via the Groundwater
Modeling System (GMS) software. If the model is completely
new, a grid is set, and then computed. Then the hydrogeologic
model can be simulated using hydrodynamic parameters.
Finally, the model is calibrated, using observed piezometric
data and providing discharge/recharge sources. If the model is
not sufficiently accurate, then the workflow restarts from the
generation of the thematic maps (hydrodynamic parameters
and discharge/recharge sources).

Fig. 2 shows the workflow of the groundwater DdM. What
is different is the sequence of the last three tasks: optimize
hyperparameters, train the model, and assess model accuracy.
In case of inaccurate model, only the last three tasks are
repeated. Table I shows the simulation parameters for the
workflow of both PdAM and DdM. The simulation has been
carried out via the BIMP simulator [7]. Fig. 3 and Fig. 4 show
the average number of executions over 10 runs, for both PdAM
and DdM, represented in a color scale. Specifically, it is
apparent that the major costs associated to the PdM are related
to the calibration loop, which is colored in red because it is
executed on average 17.2 times. In contrast, the

hyperparameters optimization loop of the DdM is carried out
on average 1.1 times. Not surprisingly, Fig. 5 and Fig. 6 show
the average duration of each task: here the calibration task
takes the highest time in PdM, and the ingestion task in DdM.
Overall, the average time for each instance of process, in the
PdM and DdM, is 13.2 months and 52.5 days, respectively.
This result clearly shows the advantages of DL in the chain.

III. THE CASE STUDY OF THE MORNAG PLAIN AQUIFER

The selected study case is the well-know Mornag Aquifer,
located in the north east of Tunisia characterized by a semi-
arid climate. The rich agricultural Mornag coastal plain, lies
20 Km SE of Tunis (Fig. 7). Vineyard and olive tree are the
main crops, and irrigation is secured by groundwater hosted
within the clastic aquifer and surface sources. Treated
wastewater for multi-reuse including irrigation are also
provided by local wastewater treatment plants [8].
Groundwater is the most important water source in Mornag
for agriculture, domestic, and industry uses. To manage the
negative effects of groundwater level decline and help
decision-making in water management, a numerical
simulation based on an integrated GIS-GMS has been
adopted. Simulation allows to understand the groundwater
flow dynamic and to assess the functioning of the aquifer
system in the Mornag Plain [9][10].

TABLE 1. GROUNDWATER MODEL SIMULATION PARAMETERS

Value
83.3 - 96.7 days

Simulation model parameter

Duration of ingest hydrogeologic data

Duration of generate sensor data 1.0 — 2.0 hours

Duration of generate geographic map 30.0 — 60.0 days

Duration of generate thematic map via GIS 27.9 —37.3 days

Duration of generate conceptual model via GMS 27.1 -35.4 days

Duration of set grid 1.0 — 2.0 hours

Duration of (re-)compute grid 24 — 48 hours

Duration of simulate hydrogeologic model 26.3 —34.6 days

Duration of calibrate hydrogeologic model 90 — 150 days
Duration of optimize hyperparameters 2.0 —4-0 hours
Duration of train the model 0.3 — 0.6 hours
Duration of assess model accuracy 0.3 — 0.6 hours
Percentage of sufficient data 95%
Percentage of existing grid 95%
Percentage of model accurate (PdM) 5%
Percentage of model accurate (DdM) 95%

The main step of the groundwater modeling process is to
develop the conceptual model, by combining all thematic
maps (aquifer geometry, boundary conditions, hydrodynamic
parameters, discharge/recharge sources, and piezometric
data). All thematic maps were integrated into the GMS using
the GIS environment. The conceptual model helps for a better
understanding of the aquifer system behaviors and tunes the
groundwater modeling [9]. After spatio-temporal
discretization, setting of the initial values, partition of the
hydrodynamic parameters, disposal of the sources and sinks,
the 3D model was simulated using the finite-difference code,
MODFLOW (Fig. 8).
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Fig. 2. BPMN workflow of groundwater Data-driven Modeling.
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Fig. 3. Heatmap based on counts for Process-driven Modeling

0 19 38 57 76 9 115 ---

NEW MODEL {@EENERATE
TO GENERATE THEMATIC
1 \neesT MAPS VIA GIS

HYDROGEOLOGIC
DATA

MODEL ] SUFFICIENT © GENERATE
DEVELOPED DATA? CONCEPTUAL
MODEL VIA GMS

OPTIMIZE
prS SET GRID

PARAMETERS,

ACCURATE?
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An important step is calibration. During iterative process, the
input parameters to a groundwater model are modified to

SET GRID

ensure that the conceptual model matches the real
hydrogeological situation. It is mainly reflected in the fact that
the simulated piezometric level is consistent with the observed
piezometric level (fitting error of the long-time observation
well was within the confidence interval) [9]. The steady-state
model was calibrated with the hydrological conditions of the
year 1971 when the hydraulic heads were appeared to be in
equilibrium condition [11]. Transient simulations were
calibrated for two stress periods, namely the winter and
summer stress periods, for each year between 1971 and 2015.
As a result, from the numerical simulation of the Mornag
aquifer system, we note that the applied method (MODFLOW
simulation) can reflect the changes within the input and output
of the groundwater system (simulated piezometric level), with
the flexibility to acknowledge physical significance
(parameter estimation) and predict the output changes under
different hydrological dynamic conditions. Nevertheless, the
spatially and temporally variable parameters and inputs to
complex groundwater models typically end in long runtimes
which hinder comprehensive calibration, sensitivity, and
uncertainty analysis. There are thus deficiencies in satisfying
the necessities of high precision and dynamic management
[12]. The PdM is calibrated using 80% of the data, and
validated with the remaining 20%. Overall, the Mean
Absolute Residual (MAR) of the hydraulic head level error
achieved is 4.84 meters [13].

IV. DEVELOPMENT OF THE DATA-DRIVEN MODEL

The proposed architectural model has been implemented,
tested, and publicly released with the dataset on the Github
platform [14], to foster its application on various research
environments. In particular, the DL architecture takes as
inputs the recharge rate (Fig. 9), river level, and pumping
wells (Fig. 10), and provides as outputs the flow front face,
flow lower face, flow right face, hydraulic head level, and
storage. The dataset is made by 88 samples. Each sample



represents a period of 6 months, from 1971 to 2015, and is
made by a grid of 725 cells (41x50), corresponding to an area
of 182 Km?.

Fig. 9. Sample input (recharge rate).

Fig. 10. Sample input (pumping wells).

The overall architecture is structured as follows. For each
of the three inputs, an independent CNN is used for feature
extraction [15]. Then, an encoding Feed Forward Neural
Network (FFNN) takes the three features provided by each
CNN, and provides an encoded output. Such output feeds five
Transpose CNN (TCNN), for corresponding five outputs. The
CNN is structured as follows: batch normalization and two
subsequent layers, each made by convolutional layer with
kernel size 5x5, a max pool layer with size 3x3, and a leaky
ReLU activation function. The structure of the encoding
FFNN is made of two layers of neurons, each layer size is
established by the hyperparameter optimization process (a
typical value is about 180 neurons). The TCNN is structured
as follows: two subsequent layers, each made by
convolutional transpose layer followed by a ReLLU activation
function. The first layer with kernel size 5x5 and dilation 2,
and the second layer with kernel size 7x7 and dilation 2.
Finally, a convolutional transpose layer with kernel size
10x10 and dilation 3. The dataset is partitioned with the
holdout method in training (60%), validation (20%) and
testing (20%).

To guarantee the reproducibility of the training, the most
sensitive hyperparameters have been set using an optimization
algorithm based on a Tree Parzen Estimator (TPE) for
determining the best choice [16]. On average, the
hyperparameter optimization has been carried out in 3.52
hours, using the following hardware resources: GPU

NVIDIA™ GeForce RTX 2080; CPU Intel® Core™ i9-9900K
@ 3.60GHz; CACHE L1 512 KB, L2 2 MB, L3 16 MB. On
average, a training is carried out in 9.67 mins. Fig. 11 shows
the average Mean Squared Error (MSE), i.e., computed over
the five outputs, against the number of iterations, in the
hyperparameters optimization process. As a result, the
following best hyperparameters values have been found:
learning rate: 0.00159, batch size: 32, patience: 50, loss: L1,
features size: 49, CNN channels: 5 (1% level), 10 (2™ level),
TCNN channels: 20 (1% level), 20 (2" level). Fig. 12 shows
the average MSE, i.e., computed over the five outputs, against
the number of iterations, for the training and validation errors
made with the best hyperparameters. The learning curve is
characterized by a good fit model, because it starts with
moderately high training and validation errors, then gradually
decreases and flattens. Moreover, both the training and
validation errors move close to each other, with validation
being slightly greater than the training error.

Fig. 11. Average MSE (meters) against number of iterations in the
hyperparameters optimization process.

Fig. 12. Average MSE (meters) of training and validation errors against
number of iterations.

Table II shows the Mean Absolute Error of the output
provided by the Data-driven Model, for the training,
validation and testing processes. Here, the different sizes are
due to the different scales of each output. In particular, it is
worth to note that the error on hydraulic head level is about
0.32 meters, which is very promising considering the
hydraulic head level error achieved by the Process-driven
Model, i.e., 4.84 meters. For a better insight, Fig. 9, Fig. 10,
and Fig. 13 show a sample input of recharge and wells
provided to the model, with the related head output (a), target
(b) and absolute error (c).



(a)

Fig. 13. Sample hydraulic head level: output (a), target (b), absolute error (c).

TABLE II. PERFORMANCE OF THE DATA-DRIVEN MODEL
oupnt | e | Valduion | Tt

Flow front face 0.000287 0.000320 0.000305
Flow lower face 1.626 2.365 1.794

Flow right face 0.000242 0.000255 0.000248
Hydraulic head level | 0.319 0.320 0.329
Storage 0.000160 0.000185 0.000163
Average 0.0639 0.0641 0.0659

V. CONCLUSIONS AND FUTURE WORK

Data-driven models and the related workflow models offer a
new perspective to groundwater modeling useful for
scientists, policy makers and water users. According to this
perspective, this work explores and measures the effectiveness
of a data-driven modeling method, developed with a Deep-
Learning architecture on a real-world case study, as well as an
operational workflow to measure its productivity compared
with a conventional process-driven approach. As a case study,
the Mornag Plain aquifer is considered. Overall, the proposed
method is able to achieve an absolute error on hydraulic head
level of 0.32 meters, which is very accurate with respect to the
error of 4.84 meters provided by a traditional approach. In
terms of workflow efficiency, the average duration of the data-
driven modeling is 52.5 days, which is very fast with respect
to the average duration of 13.2 months for the traditional
workflow. Given such promising results, the future works will
focus on more experimentation of the proposed method for a
new stream of data, to understand the variations in hydraulic
head level and how it is affected by the changes in
hydrological conditions under the context of the climate
change (recharge rate and pumping wells).
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