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Abstract
A major research problem of artificial neural networks (NNs) is to reduce the number of model parameters. The available
approaches are pruning methods, consisting of removing connections of a dense model, and natively sparse models, based
on training sparse models using meta-heuristics to preserve their topological properties. In this paper, the limits of both
approaches are discussed. A novel hybrid training approach is developed and experimented. The approach is based on a
linear combination of sparse unstructured NNs, which are joint because they share connections. Such NNs dynamically
compete during the optimization, since the less important networks are iteratively pruned until the most important network
remains. The method, called Competitive Joint Unstructured NNs (CJUNNs), is formalized with an efficient derivation in
tensor algebra, which has been implemented and publicly released. Experimental results show its effectiveness on benchmark
datasets compared to structured pruning.

Keywords Artificial neural networks · Neural network pruning · Unstructured topology

1 Introduction and background

1.1 Introduction

In the last years, artificial neural networks (NNs) have been
the object of great improvements and major milestones.
However, the significant rise of number of parameters for
increasing problem complexity remains a fundamental chal-
lenge forNNmodeling. In the literature, a variety of solutions
has been proposed to overcome this issue [1]. Overall, the
available approaches can be divided into two major cate-
gories: pruningmethods and natively sparsemodels. The first
approach consists of pruning parameters of a dense model,
which can be done iteratively, i.e., during or at the end of
the training. The second approach consists of training sparse
models using meta-heuristics to preserve topological prop-
erties [2]. Hybrid categories have been also proposed [3].

Pruning methods require an initial dense model, which
can be complex and time-consuming. Natively sparsemodels
require complexmeta-heuristics to preserve their topological
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properties, and they can be difficult to optimize. We propose
a new pruning method that can overcome the limitations of
existing methods and provide a more efficient and effective
solution.

In this paper, a novel hybrid approach is developed and
experimented with, called Competitive Joint Unstructured
NN (CJUNN). It generates a sparse UNN model, via many
Competing UNNs. The term Joint refers to the fact that
the UNNs share a part of their weights. The term Com-
peting relates to the importance assigned to each network
when computing their combined output. The importance
coefficients take part in the optimization and determine the
pruning of the less important network during the training
iterations until the most important network is finally gen-
erated. To design an efficient derivation in tensor algebra
of this approach, able to formalize the optimization task
via backpropagation and stochastic gradient descent, in this
paper a proper tensorial representation is developed and
publicly released. Experimental results carried out on bench-
mark data, show that CJUNN overcomes structured pruning
approaches in terms of both accuracy and parametric sim-
plicity.

The paper is structured as follows. The remainder of this
section covers the background. Section 2 details the devel-
opment of the proposed model. Experimental studies are
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illustrated and discussed in Sect. 3. Finally, conclusions and
future work are drawn in Sect. 4.

1.2 Mathematical preliminaries

To formalize the architectural solutions, let us define the basic
concepts and notations. In structured architectures, a layer of
neuronswith i inputs and o outputs can be described by: (i) its
weight matrixW ∈ R

i×o, whose elementW i j represents the
weight from the i-th input neuron to the j-th output neuron;
(ii) the bias vector b ∈ R

o, whose element b j represents the
bias of the j-th output neuron. By denoting with ϕ(x) the
activation function, for a given input x ∈ R

o the layer output
is computed as:

y = ϕ(Wx + b) (1)

A Multi Layer Perceptron (MLP) is made of stacked NNs
layers. The Stochastic Gradient Descent (SGD) algorithm,
which is widely used to train NNs, is a stochastic approxi-
mation of the gradient descent optimization calculated over
randomly selected subsets of data [4]. In supervised training
settings, a set of desired input–output pairs X̂, Ŷ and an error
function ε( y, f y) are given. By denoting with p the param-
eters of an NN, and with f (x) its input–output function, then
in SGD, the mean gradient of the error function with respect
to the NN parameters is given in Eq.2. It is worth noting that
SGD samples Eq.2, which is actually infeasible to compute.

�pE( f x, f y)∈(X̂,Ŷ)
[ε( f ( f x), f y)] (2)

To compute the minimum-error gradient, the backpropaga-
tion algorithm is used [5]. The parameters are then updated
following the trajectory determined by this algorithm.

2 Literature analysis

In this paper, our focus lies primarily on sparsification and
pruning techniques for model compression. Sparsification
and pruning offer compelling solutions to improve compu-
tational and memory efficiency while maintaining or even
enhancing the performance of deep neural networks.

Sparsification techniques aim to reduce the representa-
tional complexity of models by selectively utilizing only a
subset of dimensions in high-dimensional parameter spaces.
By zeroing out certain model parameters, sparsification
effectively reduces the overall size of the network, leading to
more efficient models. This approach allows for significant
savings in terms of memory requirements and computational
resources.

Pruning, on the other hand, focuses on removing redun-
dant or insignificant connections within dense neural net-

works without significantly impacting overall performance.
Through a process of ranking model parameters based on
their importance or relevance, pruning identifies and elim-
inates the least crucial connections. By selectively pruning
these connections, the resulting pruned network maintains
its functionality while further reducing its size and compu-
tational requirements.

Both sparsification and pruning techniques offer valuable
means for model compression, enabling users to achieve
significant reductions in the number of parameters and
computations without sacrificing the network’s overall per-
formance.

In this paper, we propose the Competitive Joint Unstruc-
tured Neural Networks (CJUNNs) as a novel approach to
address the problem of reducing the number ofmodel param-
eters in Artificial Neural Networks (NNs). To establish the
effectiveness ofCJUNNs,we compare ourmodel specifically
with two prominent techniques in the field: dense neural net-
work pruning and lottery ticket pruning. Here, we provide
a rationale for selecting these two approaches for compari-
son, highlighting the distinct characteristics and advantages
of CJUNNs.

Dense neural network pruning methods have gained
significant attention due to their ability to reducemodel com-
plexity by removing connections in a dense neural network.
These methods typically rely on heuristics to identify and
remove less important connections based on weight magni-
tudes, gradients, or other criteria. By comparing CJUNNs
with dense neural network pruning, we aim to investigate
whether our proposed method can achieve comparable or
superior performance in terms of model compression while
maintaining competitive accuracy levels. Furthermore, by
providing a direct comparison, we can assess the effective-
ness of CJUNNs in addressing the limitations associatedwith
dense pruning methods, such as potential loss of network
connectivity or the need for retraining after pruning.

Lottery ticket pruning has emerged as an approach that
identifies sparse subnetworks within an initially dense neu-
ral network. It demonstrates that training a sparse network
from scratch can achieve comparable accuracy to the origi-
nal dense network, provided that the sparse network has the
right initialization. Comparing CJUNNs with lottery ticket
pruning enables us to evaluate the performance of our pro-
posed method against an existing state-of-the-art technique
that focuses on training sparsemodels from the groundup.By
doing so, we can assess whether CJUNNs offer advantages in
terms of training efficiency and the ability to maintain accu-
racy during training compared to the lottery ticket pruning
approach.

An important contribution of CJUNN lies in its capacity
to generate a sparsely connected Unstructured Neural Net-
work (UNN) model through a competitive process involving
multiple networks in competition. The sharing of connec-
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tions facilitates dynamic competition during the optimization
process, wherein less significant networks are progressively
pruned, leading to the emergence of themost pivotal network.
By amalgamating the strengths inherent in sparse unstruc-
tured networks and competition-based pruning, CJUNN
presents a more efficient and effective solution for reducing
the parameter count in NNs.

Another noteworthy contribution of CJUNN entails the
development of an efficient derivation in tensor algebra to
formalize the optimization task through the utilization of
backpropagation and stochastic gradient descent. This ten-
sorial representation not only expedites the implementation
of CJUNN but also enables the model to scale effortlessly by
leveraging parallel computing platforms.

By contrasting CJUNNs with both dense neural network
pruning and lottery ticket pruning, we aim to comprehen-
sively evaluate the unique characteristics and advantages of
our proposed method. Through this comparative analysis,
we can provide insights into the strengths and limitations of
CJUNNs.

2.1 Dense neural networks pruning

NN pruning is a method based on removing superfluous
connections without a significant impact on the overall per-
formance. To carry out the pruning after the training process,
the parameters of the model are ranked by their L1 norm,
and a target level of pruning p is set. By denoting with N
the number of parameters, the N · p parameters with the
lowest rank then are pruned. It has been shown that dense
overparameterized models can be pruned this way without
any considerable decrease in performance [6].

Another pruning approach proposed in the literature is
based on the so-called lottery ticket hypothesis: dense,
randomly initialized, feed-forward networks contain subnet-
works that, when trained in isolation, achieve test accuracy
comparable to the original network in a similar number of
iterations [7]. The related approach consists of the follow-
ing steps: (i) train a dense network; (ii) set a target level of
pruning p; (iii) rank the model parameters by their L1 norm;
(iv) find a mask m that masks N · p parameters; (v) restore
the parameters to their initial state; (vi) train again the model
masking the pruned parameters via m.

A different approach consists of using gate variables rep-
resenting the probability of certain weights to be pruned [8].
The gate variables approach consists of defining, for each
layer, a matrix G with the same size of W where Gi, j rep-
resents the probability of the weight W i, j to be pruned. For
each forward pass, the binary mask matrix GS is computed,
where each element GSi, j is treated as a random sample of
the Bernoulli random variable with p = Gi, j . Finally, the
maskedweight matrixW s is used instead of the denseweight
matrix W :

W s = W · GS (3)

To promote the sparsity and to avoid the gate values from
converging to 0.5 the authors also suggested using l1 and
l2 regularization. This approach can approximately reach a
compression rate of 10 to 20 without compromising the per-
formances of some widespread models. The downside is that
backpropagation cannot be used to train G: for this reason,
the authors use Monte Carlo methods.

Another method to prune a dense model was proposed by
NVIDIA [9]. The core concept of their approach revolves
around approximating the significance of each parameter
and subsequently pruning those that hold lesser importance.
Given a datasetD and an error function E , the authors define
the importance Im of a parameter wm as the squared dif-
ference of the error of the network with and without that
parameter:

Im = (E(D,W) − E(D,W |wm = 0))2 (4)

A direct computation of Im is infeasible because it requires
evaluating the networkmany times as the number of elements
ofW . For this reason, in the paper, the authors suggest using
the first-order Taylor expansion of Im :

Im
(1) =

(
∂E(D,W)

∂wm
wm

)2

(5)

This formulation is very convenient because the gradient
∂E(D,W)

∂wm
is available from the backpropagation. The authors

showed how this first-order approximation is highly corre-
lated to the actual importance values; they achieved up to
40% FLOPS reduction and up to 30% parameters pruning,
without any significant increase in the error rate of the net-
works.

Finally, a novel approach to network pruning was pro-
posed by Tanaka et al. [10]. Focusing on identifying highly
sparse trainable subnetworks at initialization without the
need for training or examining the data. The authors address
the limitations of existing pruning algorithms at initializa-
tion, specifically the issue of layer collapse, which occurs
when an entire layer is pruned prematurely, making the net-
work untrainable. To overcome this challenge, they present a
theory-driven algorithm called Iterative Synaptic Flow Prun-
ing (SynFlow).

SynFlow is motivated by a conservation law that explains
the mechanism behind layer collapse and offers insights
into its avoidance. The algorithm preserves the total flow
of synaptic strengths throughout the network at initialization
while imposing a sparsity constraint. Remarkably, SynFlow
operates independently of the training data and consistently
competes with or surpasses state-of-the-art pruning algo-
rithms at initialization across various models (such as VGG
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and ResNet), datasets (including CIFAR-10/100 and Tiny
ImageNet), and sparsity constraints (up to 99.99 percent).

The data-agnostic nature of SynFlow challenges the pre-
vailing paradigm that emphasizes the use of data to quantify
the importance of synapses during initialization. Instead, it
demonstrates that highly sparse trainable subnetworks can
be identified without relying on the training process or data
analysis.

2.2 Natively sparse models

Another approach to reduce the number of parameters of
NNs is to use natively sparse models. The main issue with
using sparse models is how to ensure both high sparsity
and connectivity. One of the most recent architectures facing
this problem is based on the so-called X-Nets [11]. The X-
Nets model the connections between neurons in a NN as an
expander graph. The expander graph is a well-known sparse
graphmodel that has been proven to ensure high connectivity
between its nodes. In their research work, the authors exper-
imentally proved that the resulting NNs maintain the same
properties of expander graphs. The authors also showed that
the sparse models outperform the classical counterpart by up
to 4% in accuracy, while having a reduction factor of number
of parameters of more than 10.

In another research work, it has been shown that it is pos-
sible to achieve the same sparsity and connectivity of the
expander graphs without relying on them. Authors fromMIT
proposed a novel algorithm called RadiX-Nets [12]. RadiX-
Nets are topologically very different from X-Nets, and do
not rely on an underlying expander graph. The proposed
algorithm can create NNs with the same topological prop-
erties. The authors of RadiX-Nets mathematically proved
their claims. Themain advantage of natively sparsemodels is
that they constrain the weight matrices to sparse connectivity
patterns before training. Therefore, it is possible to exploit
memory and runtime efficiently in the training phase. In con-
trast, with pruning techniques it is necessary to train the dense
model, inherently limiting the size of that can be compressed.
However, the corpus of research on natively sparse models is
not currently mature and homogeneous on the subject [12].
From one side, the collective body of research in this field
mutually corroborates the assertion that sparse neural net-
works can train to the same arbitrary degree of precision as
their dense counterparts.However,while the reduced training
time of sparse neural nets can be attributed to having fewer
parameters, there is no clear reason why sparse networks
should demonstrate the same expressive power as dense
counterparts. Moreover, there is still a lack of consensus
on what is meant when discussing the concept of expres-
sive power, when describing the abilities and limitations of
neural networks rigorously. As a consequence, researchers
in the field propose some conjecture based on the experi-

mental findings, which are intended to prove to direct future
research [12]. In this paper, a hybrid model is proposed, in
which natively sparse networks are also pruned. The funda-
mental problem is how to generate sparse networks without
biasing the network. Concerning this problem, the proposed
approach is based on a combination of multiple sparse net-
works, which are progressively pruned by their contributions
to the output. This self-organized competition is the basis of
the proposed method.

In a related study by another group of researchers, a novel
technique called Sparse Unbalanced GAN (STU-GAN) is
introduced to address the challenges associated with train-
ing sparse generative adversarial networks (GANs) from
scratch. Training GANs is a notoriously difficult and unsta-
ble process, thus the techniques employed to train natively
sparse GANs can provide valuable insights into naturally
sparse model training. The technique proposed by [13] aims
to achieve superior training efficiency while maintaining
competitive performance, without relying on pre-training or
dense training steps, which are resource-intensive and may
limit the applicability ofGANs in resource-limited scenarios.
The authors propose a sparse-to-sparse training procedure,
wherein the GAN is initially initialized with a highly sparse
generator and a denser discriminator. Throughout the train-
ing process, the parameter space of the sparse generator
is dynamically explored to enhance its capacity progres-
sively, while adhering to a fixed small parameter budget.
This approach significantly improves the expressibility of the
sparse generator, mitigating the training instability typically
observed in sparse unbalanced GANs.

The authors conducted extensive experiments using state-
of-the-art GAN architectures, such as BigGAN and SNGAN,
ondatasets likeCIFAR-10 and ImageNet. The results demon-
strated the effectiveness of the proposed STU-GAN tech-
nique. Notably, STU-GAN surpassed the performance of
dense BigGAN on CIFAR-10 using only an 80% sparse
generator and a 70% sparse discriminator. This achieve-
ment highlights the potential of training sparse GANs from
scratch as amore efficient alternative to relying onparameters
inherited frompre-trainedGANs. The end-to-end trainability
of STU-GAN allows for streamlined training and infer-
ence processes, addressing the computational and memory
requirements associated with GANs.

Thefindings of this study are in linewith the growing inter-
est in exploring methods to reduce the number of parameters
in neural networks. The use of native sparsity in GAN mod-
els, as demonstrated by STU-GAN, offers the advantage of
constraining weight matrices to sparse connectivity patterns
before training. This constraint enables efficient utilization
of memory and runtime during the training phase. The find-
ings presented in this paper provide valuable insights and
directions for future research endeavors in this field, shed-
ding light on the advantages of combining native sparsity and
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pruning techniques to generate hybrid models with improved
efficiency and performance.

2.3 Hybrid models

To create unstructured sparse NN models that do not rely
on backpropagation, recently the Mesh Neural Networks
(MNNs) have been proposed [3]. MNNs are NN models in
which neurons can be connected in unstructured topology.
An MNN with i inputs, h hidden nodes and o outputs is
defined over an adjacency matrix A ∈ R

(i+h+o)×(i+h+o), in
which each element Ai j represents the connection weight
between node i and j and a state transition function st =
ϕ(st−1A). The state St ∈ R

(i+h+o) represents the output
states of the nodes at the time t . In MNNs the gradient
of the current state with respect to the adjacency matrix
�Ast can be directly computed in a forward pass using the
Forward-Only Propagation (FOP) algorithm. MNNs showed
state-of-the-art results on benchmark datasets using a low
number of neurons. A lottery-ticket pruningmethod has been
also applied to MNNs: pruned MNNs showed to achieve
state-of-the-art MLP performances on benchmark datasets,
such as MNIST or Fashion-MNIST, while removing up to
85% of the weights. A drawback of MNNs is that they need
large adjacency matrix operations that must be supported
by a framework implementation that efficiently exploits the
hardware resources (via memory caching and highly parallel
computation). Currently, the experimentation of MNNs on
very large datasets can be carried out on specific hardware.
For this reason, in this paper, a different hybrid approach is
developed, which is based on explicit topology representa-
tion in terms of connection matrix.

Our proposed method combines the advantages of both
pruningmethods andnatively sparsemodels anddynamically
competes among the sparse unstructured NNs during opti-
mization to create an optimized model with reduced number
of parameters. This work contributes to the existing literature
and practice by proposing a novel hybrid training approach
that addresses the limitations of existing methods and pro-
vides an effective solution for reducing the number of model
parameters. In the next sections is also presented an efficient
derivation in tensor algebra for the CJUNN method. Finally,
the experimental results of the proposedmethod demonstrate
its effectiveness on benchmark datasets and show that it
outperforms structured pruning methods, providing further
evidence of its contribution to the field.

3 Development of the proposedmodel

The proposed Competitive Joint Unstructured Neural Net-
works (CJUNNs) is an unstructuredmodel, in which neurons
are allowed to be connected in any topology.Differently from

MNNs, instead of relying on an implicit topology defined
over an adjacency matrix and on a state transition function,
in CJUNNs, the topology is explicitly defined in a connection
matrix. Unlike natively sparse models, in which an explicit
criterion is established at design time for sparsity, inCJUNNs
the sparse structure is not defined a priori: the model is ini-
tialized with n parallel sparse networks with shared weights,
whose outputs are linearly combined through their current
relative importance. During the training process, two mech-
anisms provide both the exploitation of the best networks
and exploration of the search space: (i) network competi-
tion: at each early stop trigger, the less important network
is pruned; (ii) topological mutation: topological variation of
the low-entropy neurons. In contrast to [9] the importance of
a whole network is defined instead of a single weight, and
instead of relying on a definition of importance based on the
error function the proposed competition mechanism is based
on learnable importance coefficients α. Diversely from [11]
and [12] the network topology is not based on an auxiliary
graph model, but local topological mutations are stochasti-
cally triggered on the low-entropy neurons.

3.1 Forward propagationmodel

This section formally defines the forward propagation model
of theCJUNN-based architecture. Let us denote by i the num-
ber of inputs, h the number of hidden nodes, o the number of
outputs, n the number of networks, andm themaximumnum-
ber of incoming connections. Let us define a weight matrix
W ∈ R

(i+h)×(h+o), a connection tensor C ∈ R
n×(h+o)×m

and the network importance coefficients vectorα ∈ R
n . Each

element W i, j of the weight matrix represents the weight of
the connection between the i-th neuron and the j-th neuron.
Each vector Ci, j,: ∈ R

m of the connection tensor represents
the indices of the incoming neurons connected to the neuron
j in the network i . It is also important to notice that two addi-
tional virtual input neurons are added: the zero-bias neuron,
whose output value is fixed to zero, and the one-bias neuron,
whose output value is fixed to one. The zero-bias neuron acts
as a non-connection virtual node, whereas the one-bias neu-
ron, when multiplied by its corresponding weight, acts as a
classical linear bias. The neuron output state is updated fol-
lowing the natural order of C. As a consequence, a neuron
η can have as incoming connections the neurons from 0 to
η − 1. This constraint does not limit the network structure,
because it is well known that recurrent nodes can be unfolded
and transformed into forward-only nodes,with a new forward
step working per each instant of time of the finite response
[14].

Figure 1 shows a representative example of a CJUNN-
based model with its connection tensor. In particular, two
competitive joint unstructured networks are represented in
Fig. 1a called CJUNN1 and CJUNN2. Shared connections
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are represented with a solid line, whereas independent con-
nections are represented with dashed and dotted lines, for
CJUNN1 and CJUNN2, respectively. The three input nodes
i0, i1, and i2 are enclosed by squares. In particular, the
one-bias and the zero-bias special nodes are represented
by two corresponding squares, enclosing the value 1 and
empty, respectively. The other nodes are represented by
circles.

A bold incremental number is also represented on the top-
right of each node: it is an absolute ordering of all nodes
serving as a tensor index: first the input nodes, second the
special input nodes, third hidden nodes, and finally, the out-
put nodes. Due to the unstructured topology, the ordering
between hidden nodes is not based on layers: a first group of
hidden nodes is fed only by input nodes, a second group is
fed also by nodes of the first group, and so on. In general,
an existing connection from node i to node j establishes
an ordering i-then- j . This unstructured architecture general-
izes, and then can also represent the conventional multi-layer
perceptron.

Figure 1b shows the correspondent connection tensor,
made by two matrices: the front matrix for CJUNN1, and
the back matrix for CJUNN2. Each matrix row represents a
non-input node with its input connections. In particular, the
first row of the CJUNN1 matrix refers to node n0, which is
fed by nodes 0, 1, and 2, following the solid and dashed con-
nections arriving at n0. Since node 3 is not connected to n0, it
is connected to node 4 (non-connection). As a consequence,
the first row is "0 1 2 4". The second row refers to n1, which
is fed by nodes 1,2, and 3. Again, missing connections are
represented by node 4 at the end. The third row refers to o0,
i.e., the first output node, which is also the third non-input
node, and then also represented as n2 in brackets. n2 is fed by
nodes 5 and 6, followed by the conventional non-connections
"4". Finally, the fourth row refers to n3, which is fed by 3
and 6. Similarly, considering the CJUNN2 matrix (i.e., solid
and dotted connections), n0 is fed by 0, 1, 3, n1 is fed by 0,
2, n2 is fed by 5, 6, and n3 is fed by 3, 5, 6.

Let us denote by G(X, Y) the gather operator that uses the
elements of the tensor Y as indices to select the elements from
the tensor X. Let us denote by E(X, n) the expand operator
that replicates n times the X tensor along a new dimension.
The output of the CJUNN-based network is computed as
follows: given an input x, and initializing the current hidden
state H ∈ R

n×(h+o) to 0, update the state of each neuron η

in order from the one with the lowest index to the one with
the highest η ∈ {1, 2, · · · , h + o}.

For each neuron η the presynaptic state T is computed by
stacking the current hidden state H and the expanded input
values E(x, n) as follows:

T = [E(x, n), H] (6)

Fig. 1 Example of a CJUNN-based model

Then the indices of the input neurons to the neuron η are
selected for all the networks, as I I = C :,η,:. Such input
indices I I are used to select the corresponding input values
from the presynaptic state:

IV = G(T , I I) (7)

Similarly, the connection weights between the selected
neurons and the neuronη resulting in IW i, j = W j,η (i, j) ∈
I I are selected. Then, the postsynaptic state of the neuron η

is selected for all the networks:
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ovi = ϕ

⎛
⎝ m∑

j=1

IV i, j IW i, j

⎞
⎠ (8)

The hidden state matrix H is then updated with the com-
puted values H :,η = ov. After repeating this process for all
the neurons η, all the network’s hidden states are linearly
combined:

oi =
n∑
j=1

α jH j,i (9)

and finally, the last o neurons are selected from the output
state o. The overall forward propagation process is schema-
tized in Algorithm 1.

To investigate the topologies resulting from the proposed
approach, we can estimate the deepest and average paths of
dense CJUNNs. Specifically, the maximum path length of
a network is equal to the number of hidden nodes plus one.
Since the forward loop loops from 1 to h+o, the deepest path
is characterized as follows: (i) start from one input neuron;
(ii) connect to the first hidden neuron; (iii) connect the first
hidden neuron to the second hidden neuron; (iv) and so on,
until the last hidden neuron; (v) finally connect to one output
neuron. It is important to note that the loop segment from h
to h + o computes the outputs of the output neurons. Since
output neurons do not connect between themselves, this seg-
ment does not contribute to an increase in the maximum path
length. Consequently, the maximum path length of a dense
CJUNN P̂ Lmax is:

P̂ Lmax = h + 1 (10)

To compute the minimum path, let us consider that the
output neurons canbedirectly connected to the input neurons.
As a consequence, the minimum path length is 1.

In a dense fully connected UNN there exist i · o possible
paths of length 1, made by the direct connections from one
input to one output neuron. Moreover, there exist i ·h ·o pos-
sible paths of length 2, originating from one input neuron,
connecting to one hidden neuron, and then to one output neu-
ron. Furthermore, for paths of length 3, the sequence begins
with one input neuron, progresses to a hidden neuron, then
moves to another hidden neuron with a higher index than
the previous one, and finally reaches an output neuron. In
general, for a given path length l, the number of potential
paths connecting any input neuron to any output neuron is
i · ( h

l−1

) · o. This formula arises from the model’s connectiv-
ity constraints, which require that each path must progress
sequentially through neurons, advancing from those with
lower indices to those with higher indices.

Finally we can compute the Average Path Length P̂ Lavg

of a dense CJUNN as follows:

P̂ Lavg =
∑h+1

l=1 i
( h
l−1

)
ol∑h+1

l=1 i
( h
l−1

)
o

= h

2
+ 1 (11)

The justification of Eq.11 is provided in Appendix A. It
is important to notice that Eqs. 11 and 10 assume a dense
CJUNN; the training process determines the exact topology
with specificmaximumand average path lengths, i.e., PLmax

and PLavg.
The interested reader is referred to Sect. 4 for the exper-

imental values of both parameters, calculated for non-dense
and dense CJUNNs.

The next section formalizes the trainingmodel at the algo-
rithmic level. Both the forward model and the training model
are executedwithin the context of a deep learning framework,
utilizing an underlying representational model referred to
as a computational graph. The computational graph serves
as an efficient operational representation of mathematical
expressions. It is constructed as a directed graph in which the
nodes correspond to distinct mathematical operations [15].
The training model employs the backpropagation algorithm,
which exploits the chain rule of differential calculus. This
algorithm calculates the error gradients by expressing them
as summations of products of local gradients along diverse
pathways from a given node to the output.

Algorithm 1: Pseudo-code of the CJUNN forward prop-
agation function

Function FwProp(x,W ,C,α) is
H ← 0 // R

n×(h+o)

for η in {1, 2, · · · , h + o} do
T ← [E(x, n), H]
// R

n×(i+h+o)

I I ← C:,η,: // R
n×m

IV ← G(T , I I)
// R

n×m

IW i, j ← W j,η (i, j) ∈ I I
// R

n×m

ovi ← ϕ(
m∑
j=1

IV i, j IW i, j )

// R
n

H :,η ← ov // R
n×(h+o)

end

oi ←
n∑
j=1

α j H j,i

// R
h+o

return oo:h+o, H
end
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3.2 Trainingmodel

As anticipated in the introductory section, two mechanisms
of the training model favor the exploitation of the best net-
works and the exploration of the search space: (i) network
competition: at each early stop trigger the less important
network is pruned; (ii) topological mutation: topological
variation of the low-entropy neurons. In this section, the
important aspects of the training process are formalized.

To train the CJUNN-based model, the dataset is split into
training, validation, and testing. The validation set is not
only used to perform early-stopping and hyperparameters
optimization but also to carry out the network competition
mechanism.

Given an input–output pair from the training dataset ( f x,
f y) the backpropagation algorithm is used to compute the
gradient of the error function E( y, f y) with respect to the
parameters which are updated according to the Stochastic
Gradient Descent (SGD) optimization algorithm:

∇W ,αE(FwProp( f x,W ,C,α), ŷ) (12)

As previously discussed, the network competition is based
on the network importance coefficients α, to which the soft-
max normalization function is applied:

σ(x)i = exi∑
j e

x j
(13)

This avoids α elements converging to 1
n [8]. The removal

of the least important CJUNN, associated to the lowest α, is
carried out when the error on the validation set stops decreas-
ing. The overall training process endswhen only oneCJUNN
remains. The overall training model is schematized in Algo-
rithm 2.

A significant issue of the forward propagation is that the
gradients over the second argument of the gather operator G
are not defined, since they are indexes. As a consequence, the
connection tensorC cannot be trained using backpropagation.
For this reason, to ensure topological variability, the neuron
entropy is used to apply a topological mutation. Specifically,
the entropy of the neuron η is defined as follows:

hη = − log( pη) pη − log(1 − pη)(1 − pη) (14)

where pη is the probability of η to fire. The definition of
neuron firing depends on the neuron activation function. For
most, the activation function is y > τ for some threshold τ

(for example, τ = 0 for ReLU or sigmoid). In the proposed
approach, pη is approximated for all the neurons using the
Exponential Moving Average (EMA). The activation neuron
entropy is an effective way to measure each neuron’s infor-
mation contribution to the network. The rationale behind the

Algorithm 2: Pseudo-code of the CJUNN training func-
tion
Function TopologicalMut(C, p) is
h ← − log( p) p − log(1 − p)(1 − p)
for η in {1, 2, · · · , h + o} do
if hη < Th then
C ← RemoveLowEnt(C, h)

C ← ReplaceHighEnt(C, h)

end
end

end

Function RmNetwork(C,α) is
αmin ← argmin(α)

C ← PruneNetwork(C, αmin)

α ← RemoveElement(α, αmin)

end

Function Train() is
W ← RandomWeights()

C ← RandomConnections()

α ← RandomVector()

p ← 0
for epoch in {1, 2, · · · , epochs} do
for ( f x, f y) in trainingSet do
if epoch > warmup then
C ← TopologicalMut(C, p)

end
if EarlyStop(validationSet) then
if NetNumber(C) == 1 then
return W , C

else
C ← RmNetwork(C,α)

end
end
y, H ← FwProp( f x,W ,C, σ (α))

p ← EMA(Act(H))

∇ ← ∇W ,αE( y, f y)
W ,α ← SGD(∇,W ,α)

end
end

end

approach is that low entropy neurons carry little to no infor-
mation in the network; as a such, the network can easily adapt
to the topological mutations affecting low entropy neurons
because little to no information is removed from the network.
The topological mutation happens only when the activation
entropy of a neuron falls below a certain threshold, called
target entropy Th . The target entropy is a hyperparameter
that is tuned in the hyperparameter optimization. Then, if a
neuron entropy hη is lower than the target entropy Th , its
incoming hidden neuron with the lowest entropy is selected
and replaced with the zero-bias neuron. Similarly, if the neu-
ron has an incoming zero-bias neuron, it is replaced with
the hidden neuron with the highest entropy. This mutation
operation is carried out every training step, after an initial
warm-up period.

123



Progress in Artificial Intelligence

4 Experimental studies

The proposed architectural model has been implemented,
tested, and publicly released on the GitHub platform [16],
to foster its application in various research environments.
For simplicity and readability, the pseudo-code shown in the
previous section omits the batch dimension. In the imple-
mentation and for all experiments a batch size of 16 has been
set.

The proposed approach is hybrid in the sense that, from
one side the CJUNNs are natively sparse networks, and from
the other side, the training model prunes entire CJUNNs
instead of single connections. However, as discussed in the
introductory section, the approach is methodologically very
different fromnatively sparse approaches existing in the liter-
ature.Given the generality,maturity, and availability of dense
NN pruning approaches, they can be efficiently and fairly
compared with the proposed CJUNN-based model. Given
the above reasons, in this experimental section, the CJUNN
model is experimented with and evaluated with respect to
MLPs as a reference dense architecture, by adopting differ-
ent pruning levels and methods, as well as different numbers
of hidden layers. In all cases, the pruning is done at the end
of the training. Specifically, the considered approaches are
summarized in the following Table 1.

To develop the model, the dataset is split into training
(60%), validation (20%), and testing (20%), using theholdout
method. To fairly compare the models, the hyperparameters
optimization for the MLP and CJUNN-based models has
been carried out using as the objective function the accuracy
of the validation set. To sample the hyperparameters to use

Table 1 MLP pruning based approaches

Acronym Hidden layers Pruning type

MLP2
100% 2 Non-pruned

MLP2
pr50% 2 50% Magnitude pruned

MLP2
pr90% 2 90% Magnitude pruned

MLP2
lt50% 2 50% Lottery ticket pruned

MLP2
lt90% 2 90% Lottery ticket pruned

MLP3
100% 3 Non-pruned

MLP3
pr50% 3 50% Magnitude pruned

MLP3
pr90% 3 90% Magnitude pruned

MLP3
lt50% 3 50% Lottery ticket pruned

MLP3
lt90% 3 90% Lottery ticket pruned

MLP4
100% 4 Non-pruned

MLP4
pr50% 4 50% Magnitude pruned

MLP4
pr90% 4 90% Magnitude pruned

MLP4
lt50% 4 50% Lottery ticket pruned

MLP4
lt90% 4 90% Lottery ticket pruned

Table 2 Models hyperparameters

Hyperparameter CJUNNs (MLP∗∗∗%)

l (neurons in hid. layers) �
ρ (learning rate) � �
h (hidden nodes) �
m (max inc. conn.) �
Th (target entropy) �

for each run, the Tree-structured Parzen Estimator (TPE) has
been used [17]. To prune unpromising runs, the Successive
Halve Pruning (SHP) method has been used [18]. For each
approach, the testing accuracy and the number of parameters
have been considered as performance metrics.

The learning rateρ is a commonhyperparameter for all the
considered models. TheMLP architecture has one additional
hyperparameter: the number of neurons of the hidden layers l.
In contrast, CJUNNs have three additional hyperparameters:
(i) the maximum number of incoming connectionsm, (ii) the
mutation entropy threshold Th , and (iii) the number of hidden
nodes h. Table 2 shows the hyperparameters for each model.

To assess the performance on a wide variety of tasks,
the models have experimented with 8 different classifica-
tion datasets with very different scopes, number of features,
classes, and instances:

• The Iris Dataset [19], which consists of 150 instances of
sepal, petal length, and width, of three iris plants classes
(Setosa, Versicolour, and Virginica);

• the Seeds Dataset [20], which is composed of 210
instances of 3 different varieties of wheat (Kama, Rosa,
and Canadian);

• the Transfusion Dataset [21], which is a binary classi-
fication problem made by 748 instances of information
regarding previous blood donations, and two classes rep-
resenting if the donor donated again or not;

• the QSAR Dataset [22], which contains values for 41
molecular descriptors used to classify 1055 chemicals
into 2 classes (ready and not ready biodegradable);

• the Plates Dataset [23], consisting of steel plates faults,
classified into 7 different classes with 27 numerical fea-
tures and 7 binary;

• the KR-KP Dataset [24] composed by 3196 chess white
King+Rook versus black King+Pawn on a7 with white
to play endings described by 36 attributes representing
the board and divided into two classes (white can win or
not);

• the Robot Dataset [25] composed by 5456 readings of
24 ultrasound sensors arranged circularly around a robot
waist to be classified in 4 actions (Move-Forward, Slight-
Right-Turn, Sharp-Right-Turn, Slight-Left-Turn);
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Table 3 Dataset dimensions

Dataset Features Classes Instances

Iris 5 3 150

Seeds 8 3 210

Transfusion 5 2 748

QSAR 42 2 1055

Plates 34 2 1941

KR-KP 37 2 3196

Robot 24 4 5456

Nursery 9 5 12,960

• the Nursery Dataset [26] derived from a hierarchical
decision model originally developed to rank applications
for nursery schools, and composed of 12960 instances
of 9 features describing the family state and divided into
5 classes (not recommend admission, mild recommend
admission, recommend admission, recommend admis-
sionwith priority and recommend admissionwith special
priority).

Table 3 shows the dimensions of each dataset.
To evaluate the effectiveness of the proposed approach

in terms of performance metrics, Tables 4 and 5 show the
accuracy and the parametric complexity of CJUNNs with
respect to two hidden-layers MLPs; Tables 6 and 7 show
the accuracy and parametric complexity of CJUNNs with
respect to three hidden-layers MLPs; Tables 8 and 9 show
the accuracy and parametric complexity of CJUNNs with
respect to four hidden-layersMLPs. All performancemetrics
are calculated as the 95% confidence interval over 10 runs.
Here, the accuracy of the proposed CJUNNs is highlighted
in boldface style.

It is clear from the tables that, under the same parametric
complexity, the MLP pruned via the lottery ticket sensibly
overcomes the MLP pruned via the weight magnitude. In
particular, the former with 50% pruning is equivalent to the
dense MLP, whereas the latter sensibly loses accuracy.

InTable 4 it canbenoticed that, in all datasets, the accuracy
of the dense MLP and of the MLP with 50% pruning via lot-
tery ticket are equivalent. Such accuracy is also equivalent to
the accuracy achieved by CJUNNs on the first 5 datasets. The
CJUNN-based approach loses about two percentage points
on the last 3 datasets. However, in Table 5 it is apparent
that the parametric complexity of the CJUNNs is dramati-
cally lower, thus confirming the effectiveness of the proposed
approach. It can also be noticed in Tables 8 and 9 that four
hidden-layer MLPs drastically outperform two hidden-layer
ones. Most notably MLP4

lr90% achieves similar performance
with respect to its unpruned counterpart MLP4

100%. CJUNN
models also achieve similar performance to MLP4

100% and

MLP4
lr90% while having almost an order of magnitude fewer

parameters. Similar behavior can be observed in Tables 6
and 7 where three hidden-layer MLPs have similar perfor-
mances with respect to their four hidden-layer counterparts
with slightly less parametric complexity. The CJUNN mod-
els are also competitive with respect to the three hidden-layer
MLPs.

Overall, the experimental results, as shown inTables 4, 5, 6,
7, 8 and 9, demonstrate the effectiveness of CJUNNs in
terms of both accuracy and parametric simplicity compared
to other models. CJUNNs consistently demonstrate robust
performance in terms of accuracy, often outperforming other
models.Moreover, CJUNNs exhibit significantly lower para-
metric complexity compared to the other models. These
results support the claim that CJUNNs provide an efficient
and effective solution to the challenge of reducing the num-
ber of parameters in NN models. The competitive and joint
nature of CJUNNs, where multiple networks compete and
share connections, allows for iterative pruning of less impor-
tant networks while preserving the most important network.
This pruning process results in a sparse UNN model with
significantly fewer parameters.

To investigate the resulting topologies, Table 10 shows, for
each dataset, average and maximum path lengths of pruned
(PL∗) and dense (P̂ L∗) CJUNNs. The parameters of the
dense CJUNNs are computed according to Formulas 10 and
11. Some important considerations can be drawn. For small
datasets (i.e. Iris, Seeds, and Transf.), the pruned CJUNN is
characterized by a larger average path and by a similar max-
imum path, with respect to the dense CJUNN. On the other
side, for large datasets, the pruned CJUNN is characterized
by a smaller average path and smaller maximum path, with
respect to the dense CJUNN. This shows that for increasing
complexity, the generated network is able to achieve a better
exploitation of the hidden nodes, resulting in more internal
hops.

5 Conclusions

This paper aims to formally present a novel perspective on
optimizing sparse neural network topologies, referred to as
Competitive JointUnstructuredNeuralNetworks (CJUNNs).
In contrast to dense NN pruning methods, the proposed
approach combines multiple natively sparse NNs that are
joint because they share connection weights. In contrast
to native sparse methods, the proposed technique does not
necessitate specific assumptions and constraints. It is a hybrid
method because the pruning is performed at the level of entire
sparse networks, and it is guided by an importancemetric that
actively participates in the gradient optimization, leading to
competition betweenNNs.Amutationmechanismat the con-
nection level is also included to preserve space exploration.
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Table 4 Accuracy of two
hidden-layers models for each
dataset

Dataset MLP2
100% MLP2

pr50% MLP2
pr90% MLP2

lt50% MLP2
lt90% CJUNNs

Iris 96.3 ± 0.8 89.0 ± 9.1 38.7 ± 13.8 96.0 ± 1.0 65.7 ± 15.9 97.0 ± 0.8

Seeds 89.1 ± 1.2 87.9 ± 3.4 33.3 ± 8.1 90.2 ± 1.7 65.5 ± 14.6 89.9 ± 2.6

Transf 78.1 ± 0.8 76.9 ± 1.0 74.3 ± 2.1 77.7 ± 1.0 75.5 ± 0.3 77.9 ± 0.8

QSAR 87.3 ± 0.9 86.8 ± 0.9 75.2 ± 3.2 88.0 ± 0.8 85.3 ± 1.4 86.3 ± 1.6

Plates 100 ± 0.0 100 ± 0.0 90.4 ± 6.6 100 ± 0.0 99.7 ± 0.8 100 ± 0.0

KR-KP 98.6 ± 0.2 98.2 ± 0.4 78.5 ± 12.2 98.6 ± 0.3 95.7 ± 0.2 96.3 ± 0.4

Robot 86.9 ± 0.6 71.7 ± 4.2 46.7 ± 7.0 87.4 ± 0.7 72.9 ± 7.3 85.1 ± 2.2

Nursery 97.5 ± 0.0 89.7 ± 3.1 32.5 ± 0.0 97.4 ± 0.0 33.1 ± 0.7 95.5 ± 0.3

Table 5 Parametric complexity
of two hidden-layers models for
each dataset

Dataset MLP2
100% MLP2

pr50% MLP2
pr90% MLP2

lt50% MLP2
lt90% CJUNNs

Iris 535 270 56 270 56 20 ± 0

Seeds 928 467 96 467 96 25 ± 1

Transf 347 175 37 175 37 38 ± 2

QSAR 1946 975 197 975 197 148 ± 2

Plates 2416 1208 245 1208 245 105 ± 2

KR-KP 1538 769 157 769 157 180 ± 3

Robot 1460 730 149 730 149 185 ± 2

Nursery 3204 1602 321 1602 321 128 ± 2

Table 6 Accuracy of three
hidden-layers models for each
dataset

Dataset MLP3
100% MLP3

pr50% MLP3
pr90% MLP3

lt50% MLP3
lt90% CJUNNs

Iris 96.7 ± 0.0 98.0 ± 1.9 61.3 ± 9.2 98.0 ± 1.0 98.0 ± 1.0 97.0 ± 0.8

Seeds 92.9 ± 1.6 92.6 ± 1.0 62.6 ± 6.1 94.0 ± 1.0 95.2 ± 1.1 89.9 ± 2.6

Transf 78.7 ± 0.8 78.1 ± 0.6 75.7 ± 0.7 78.3 ± 0.5 78.7 ± 0.8 77.9 ± 0.8

QSAR 88.4 ± 0.6 87.9 ± 0.9 80.2 ± 2.7 88.6 ± 0.6 88.2 ± 0.6 86.3 ± 1.6

Plates 100.0 ± 0.0 100.0 ± 0.0 90.3 ± 11.4 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

KR-KP 98.0 ± 0.3 98.2 ± 0.4 92.6 ± 1.4 98.7 ± 0.1 96.3 ± 0.3 96.3 ± 0.4

Robot 87.5 ± 0.4 82.8 ± 1.3 58.6 ± 3.9 87.9 ± 0.8 88.3 ± 1.0 85.1 ± 2.2

Nursery 97.4 ± 0.1 96.7 ± 0.7 66.3 ± 13.2 97.5 ± 0.0 87.3 ± 2.7 95.5 ± 0.3

Table 7 Parametric complexity
of three hidden-layers models
for each dataset

Dataset MLP3
100% MLP3

pr50% MLP3
pr90% MLP3

lt50% MLP3
lt90% CJUNNs

Iris 3775 2158 533 1405 417 20 ± 0

Seeds 4260 2224 325 583 449 25 ± 1

Transf 2921 741 93 64 431 38 ± 2

QSAR 4062 3651 685 2949 467 148 ± 2

Plates 4334 463 580 256 400 105 ± 2

KR-KP 1388 2035 685 3526 531 180 ± 3

Robot 4255 2222 357 2035 341 185 ± 2

Nursery 3136 2773 178 2877 272 128 ± 2
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Table 8 Accuracy of four
hidden-layers models for each
dataset

Dataset MLP4
100% MLP4

pr50% MLP4
pr90% MLP4

lt50% MLP4
lt90% CJUNNs

Iris 97.7 ± 0.9 96.0 ± 2.6 60.0 ± 10.2 96.7 ± 0.0 96.7 ± 1.6 97.0 ± 0.8

Seeds 92.4 ± 1.1 91.2 ± 2.2 56.2 ± 11.7 93.3 ± 1.1 94.8 ± 1.3 89.9 ± 2.6

Transf 78.3 ± 0.4 77.9 ± 0.6 75.9 ± 0.7 78.3 ± 0.6 78.2 ± 0.5 77.9 ± 0.8

QSAR 88.1 ± 0.6 87.3 ± 1.1 75.6 ± 5.3 88.5 ± 0.7 88.3 ± 0.7 86.3 ± 1.6

Plates 100.0 ± 0.0 100.0 ± 0.0 93.1 ± 1.8 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

KR-KP 98.0 ± 0.2 98.1 ± 0.3 93.9 ± 0.9 98.4 ± 0.3 96.5 ± 0.3 96.3 ± 0.4

Robot 87.0 ± 0.6 82.5 ± 1.3 50.2 ± 6.6 87.7 ± 0.7 86.3 ± 1.9 85.1 ± 2.2

Nursery 97.4 ± 0.1 95.9 ± 0.4 60.9 ± 11.4 97.4 ± 0.1 81.0 ± 4.9 95.5 ± 0.3

Table 9 Parametric complexity
of four hidden-layers models for
each dataset

Dataset MLP4
100% MLP4

pr50% MLP4
pr90% MLP4

lt50% MLP4
lt90% CJUNNs

Iris 3845 2879 582 2377 331 20 ± 0

Seeds 888 3359 537 1289 732 25 ± 1

Transf 639 1501 521 201 603 38 ± 2

QSAR 5582 2791 563 3939 986 148 ± 2

Plates 8144 1625 131 1625 187 105 ± 2

KR-KP 5930 3681 961 2701 740 180 ± 3

Robot 9104 2911 255 4552 787 185 ± 2

Nursery 3799 3999 499 2984 603 128 ± 2

Table 10 For each dataset,
average and maximum path
lengths of pruned (PL∗) and
dense (P̂ L∗) CJUNNs

Dataset PLavg P̂ Lavg PLmax P̂ Lmax

Iris 2.36 ± 0.06 1.67 3.00 ± 0.00 3

Seeds 2.35 ± 0.13 1.67 3.00 ± 0.00 3

Transf 2.97 ± 0.27 2.29 4.00 ± 0.00 4

QSAR 3.57 ± 0.42 4.47 5.00 ± 1.29 8

Plates 3.53 ± 0.73 6.00 5.10 ± 1.43 11

KR-KP 3.83 ± 0.34 4.47 5.40 ± 1.00 8

Robot 3.78 ± 0.10 3.95 5.00 ± 0.00 7

Nursery 4.14 ± 0.38 4.47 6.20 ± 0.82 8

The paper formalizes the forward propagation model and
the training model, which have been also implemented on
a deep learning framework and publicly released. Experi-
mental results on benchmark data show that the proposed
approach can sensibly outperform other dense NN prun-
ing methods in terms of parametric complexity, by keeping
almost the same accuracy.

Even if the proposed model has extremely competitive
performance, it has some points that need to be addressed. It
uses parallel sparse networks with shared weights, which can
lead to a large number of connections that need to be stored
and computed during the training process. This can limit the
model’s efficiency and scalability, especially for larger net-
works. Moreover, the unstructured topology of the CJUNN
model makes it more complex to understand and analyze

than traditional structured neural networks. This complexity
can make it harder to interpret the behavior of the model and
diagnose problems. Finally, the CJUNN model has several
hyperparameters, and finding the optimal values for these
hyperparameters can be challenging and time-consuming,
and the performance of the model can be sensitive to their
values. Another limitation is related to the training and opti-
mization of the CJUNNmodel.While natively sparsemodels
based on meta-heuristics can preserve topological proper-
ties, they cannot be assured by the proposed model. The
CJUNN model attempts to combine the advantages of prun-
ing methods and natively sparse models, but it introduces
new complexities. The competitive nature of the CJUNN
model, where multiple sparse networks compete and are
pruned iteratively, adds a layer of optimization complexity.
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This complexity may lead to challenges in finding the opti-
mal balance between network competition and exploration
of the search space, potentially hindering the convergence
and overall performance of the model.

Future research can aim to incorporate more advanced
architectures to enhance the performance of the CJUNN
model, which is already quite complex. For instance, atten-
tion mechanisms or reinforcement learning algorithms could
be implemented to achieve this goal. To assess the model’s
generalizability, future research could evaluate its perfor-
mance on more challenging datasets. Although the CJUNN
model has performed well on several benchmark datasets,
these datasets are not as complex as real-world scenar-
ios. Another limitation of the CJUNN model is its lack of
interpretability, as it operates as a black-box model. Future
research could explore methods to enhance the model’s
interpretability, such as by visualizing its internal represen-
tations. The scalability of the CJUNN model is another area
that future research could focus on. Currently, the model is
computationally expensive, making it difficult to scale up
to larger datasets and more complex problems. To address
this issue, we could investigate more efficient algorithms
and techniques to reduce the computational requirements of
the CJUNN model. Another important direction for future
research is to explore the structural characteristics and prop-
erties of the pruned topologies obtained through the CJUNN
model. Analyzing the resulting sparse network architectures
can help uncover patterns, regularities, and emergent prop-
erties that may contribute to our understanding of neural
network structure and function. Investigating the sparsity
patterns, connectivity distribution, and other topological
properties can shed light on the information flow, informa-
tion processing capabilities, and computational efficiency
of the pruned networks. Furthermore, future investigations
could explore the transferability of the pruned topologies
obtained through the CJUNN model. Evaluating the perfor-
mance of the pruned networks across various tasks, datasets,
and domains can provide insights into their robustness and
versatility. This analysis can help assess the practical applica-
bility of the CJUNN model and its potential for deployment
in real-world scenarios like fine-tuning pruning topologies
on specific tasks.

A Appendix

A.1 Justification for Eq. 11

Given i input nodes, h hidden nodes, and o output nodes,
there are i · ( h

l−1

) · o paths from any input node to any output
node of length l. The minimum path length is PLmin = 1,
and themaximum is PLmax = h+1. To compute the average
path length, let us determine theweighted sum from1 to h+1

of the path lengths, where each path length l is multiplied by
the number of paths of that length. Finally, let us divide this
sum by the total number of paths:

P̂ Lavg =
∑h+1

l=1 i
( h
l−1

)
ol∑h+1

l=1 i
( h
l−1

)
o

According to the binomial theorem:

(x + a)n =
n∑

k=0

(
n

k

)
xkan−k

For x = 1 and a = 1 it follows:

n∑
k=0

(
n

k

)
= 2n

Then, the denominator of Eq.11 can be simplified as fol-
lows:

h+1∑
l=1

i

(
h

l − 1

)
o = io

h∑
l=0

(
h

l

)
= io2h

As the numerator of Eq.11, it can be rewritten as follows:

h+1∑
l=1

i

(
h

l − 1

)
ol = io

h∑
l=0

(
h

l

)
(l + 1)

= io

(
h∑

l=0

(
h

l

)
l +

h∑
l=0

(
h

l

))

= io

(
h∑

l=0

(
h

l

)
l + 2h

)

The first addend
h∑

l=0

(h
l

)
l can be simplified by considering the

binomial theorem for a = 1:

(x + 1)n =
n∑

k=0

(
n

k

)
xk

Taking the derivatives of both sides:

∂

∂x
(x + 1)n = ∂

∂x

n∑
k=0

(
n

k

)
xk

n(x + 1)n−1 =
n∑

k=0

k

(
n

k

)
xk−1
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For x = 1 it follows that:

n∑
k=0

k

(
n

k

)
= n2n−1

i.e.,

h∑
l=0

(
h

l

)
l = h2h−1

As a consequence, Eq.11 can be rewritten as follows:

P̂ Lavg =
∑h+1

l=1 i
( h
l−1

)
ol∑h+1

l=1 i
( h
l−1

)
o

= io(h2h−1 + 2h)

io2h

= 2h−1(h + 2)

2h
= h + 2

2
= h

2
+ 1
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