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Abstract

In this research, some of the issues that arise from the scalarization of the
multi-objective optimization problem in the Advantage Actor Critic (A2C) re-
inforcement learning algorithm are investigated. The paper shows how a naive
scalarization can lead to gradients overlapping. Furthermore, the possibility
that the entropy regularization term can be a source of uncontrolled noise is
discussed. With respect to the above issues, a technique to avoid gradient
overlapping is proposed, while keeping the same loss formulation. Moreover,
a method to avoid the uncontrolled noise, by sampling the actions from dis-
tributions with a desired minimum entropy, is investigated. Pilot experiments
have been carried out to show how the proposed method speeds up the training.
The proposed approach can be applied to any Advantage-based Reinforcement
Learning algorithm.

Keywords: Reinforcement Learning, Actor Critic, Deep Learning,
Gradient-based optimization

1. Introduction and formal background

1.1. Introduction

In last years, unprecedented results has been achieved in the Reinforcement
Learning (RL) research field with the use of Artificial Neural Networks (ANNs).
In essence, in an RL model an agent interacts with its environment and, upon
observation of the consequences of its actions, learns to adapt its own behaviour
to rewards received. An agent behavior is modelled in terms of state-action
relationships. The goal of the agent is to learn a control strategy (i.e., a policy)
maximizing the total reward. An important advancement in the field has been
the possibility to operate with high-dimensional state and action spaces via
Deep Learning [1].
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More specifically, policy gradient models optimize the policy, represented
as a parameterized function, via gradient-descent optimization. An increasing
interest of the research community has recently led to the paradigm shift of
multi-objective reinforcement learning (MORL), in which learning control poli-
cies are simultaneously optimized over several criteria [2] [3].

In RL Advantage learning is used to estimate the advantage of performing
a certain action. [4] Consequently, in the Actor-Critic (AC) method a value
function(which measures the expected reward) is learned in addition to the
policy, in order to assist the policy update [5]. This model is based on a “Critic”,
which estimates the value function, and an “Actor”, which updates the policy
distribution in the direction suggested by the “Critic” [6].

This research work focuses on some significant issues of the Advantage Actor
Critic (A2C) algorithm, that arise from the scalarization of the multi-objective
optimization problem. Firstly, it shows that a naive scalarization can lead to
gradients overlapping. Secondly, it investigates the possibility that the entropy
regularization term can inject uncontrolled noise. With respect to such issues,
a technique to avoid gradient overlapping (called Non-Overlapping Gradient,
NOG) is proposed, which keeps the same loss formulation. Moreover, a method
to avoid the uncontrolled noise, by sampling the actions from distributions with
a desired minimum entropy (called Target Entropy, TE), is investigated. Ex-
perimental results compare the A2C algorithm with the proposed combination
of A2C with NOG and TE (A2CNOG+TE).

With regard to performance evaluation, we carried out the hyperparameters
optimization for each scenario over the same task [7]. Then using the best
hyperparameters, we computed the confidence intervals over multiple runs.

As a relevant result, the combination of TE and NOG determines a decrease
of the training time necessary to solve the problem. Specifically, the proposed
technique achieves a larger speedup for increasing problem complexity.

The algorithmic design of the proposed approach is compliant with any
Advantage-based Reinforcement Learning algorithm derived from A2C that
share the same loss function components. The A2CNOG+TE algorithm has been
developed, tested and publicly released on the Github platform, to foster its
application on various research environments.

1.2. Formal background

An RL problem defines an environment representing a task. The objective
of an RL algorithm is to find an optimal policy that an agent has to follow
to solve the task. The environment can be represented as a Markov Decision
Process (MDP). Denoting by S the state space, and by A the action space, it
can be defined: (i) the state transition function fs(s, a) : S × A ⇒ S; (ii) the
reward function r(s, a) : S ×A ⇒ R.

The objective of an RL algorithm is then to find a policy π(s) : S ⇒ A
such that following its trajectories T = {at = π(st), st+1 = fs(st, at) ∀t}
the cumulative sum of the rewards

∑∞
k=0 r(sk, ak) for any starting state s0 is

maximized.
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Usually, the policy is stochastic: π(s) is a function that, for each state s ∈ S,
returns the probability of each action a ∈ A, i.e., π(s) : S ⇒ A × (0, 1). By
using π(s, a) we assume that a is the action sampled from a categorical distri-
bution with probabilities π(s), and π(s, a) : S × A ⇒ (0, 1) is the probability
of the action a in the distribution π(s). Under such assumption, the objec-
tive is to maximize the expectation of the cumulative sum of the rewards, i.e.,
E[
∑∞
k=0 r(sk, ak)] =

∑∞
k=0 r(sk, ak)π(sk, ak).

In the literature, if the policy π(s) is approximated using an ANN, the term
Deep Reinforcement Learning is used. RL algorithms are divided into two major
categories: off-policy and on-policy [8]. The off-policy algorithms use stochastic
techniques, for example ε−greedy, to explore the state space. In the first phase,
such algorithms perform random actions and accumulate the transactions in a
replay memory. In the second phase, the off-policy algorithms sample some
transactions from the replay memory, and use them to train the policy. In
contrast, the on-policy algorithms explore the space by following the policy and
updating it via the current transactions without a replay memory.

In this paper we focus on the issues that arise in a family of on-policy algo-
rithms.

1.3. The Advantage Actor Critic (A2C) Algorithm

The Advantage Actor Critic (A2C) algorithm, proposed by OpenAI, is the
synchronous version of the Asynchronous Advantage Actor Critic (A3C) algo-
rithm, proposed by Google [6]. It has been shown that A2C has the same
performance of A3C but with a lower implementation and execution complex-
ity.

A2C is based on the REINFORCE algorithm [5]. Let us define, for each time
step t, the future discounted cumulative reward Rt =

∑∞
i=0 γ

irt+i. In the REIN-
FORCE algorithm, each optimization step tends to maximize the expectation
E[Rt]. Let us denote θπ the parameters of π(s). The REINFORCE algorithm
follows the optimization trajectory defined by ∆θπ log(π(s, a|θπ))Rt, which is an
unbiased estimation of ∆θπE[Rt]

1.
Usually, the quantity log(π(s, a|θπ))Rt has an high variance, and the opti-

mization trajectories defined by ∆θπ log(π(s, a|θπ))Rt are very noisy. To over-
come this issue a baseline b(t) is used to reduce the variance, and the gradient
∆θπ log(π(s, a|θπ))(Rt− b(t)) is computed. A classical baseline can be the mean
of Rt.

The contributions of A2C to REINFORCE are twofold: to use an ANN
V (st) approximating Rt as the baseline b(t), and to use this ANN to bootstrap
the Rt computation in partially observed environmental trajectories.

In REINFORCE Rt can be computed after the end of the episode. In con-
trast, in A2C the V (st) estimates Rt, and this value can be used to estimate
the future discounted cumulative reward before the end of the episode. There-
fore, A2C performs an optimization step every N steps, without waiting for the

1This is known as the log derivative trick.
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Figure 1: Rt computation in REINFORCE (left) and A2C2

(right)

end of the episode. A visual representation of this difference is given in Figure
1. Here, each box represents the current reward rt whereas Rt represents the
future total discounted cumulative reward. In the case of A2C, the future total
discounted cumulative reward is computed via the available cumulative reward
R̃t and an estimation of Rt of the last available state using V .

Overall, the remainder of this paper is structured as follows. Section 2
is devoted to the scalarization issues of the A2C algorithm. The proposed
A2CNOG+TE algorithm is presented in Section 3. Experimental studies are
covered by Section 4. Finally, Section 5 summarizes the major achievements
and future work.

2. Scalarization issues of the A2C algorithm

The A2C algorithm uses two ANNs to approximate the two functions π(s|θπ)
and V (s|θv). As previously stated, in A2C the environment is observed only
for N steps (instead of waiting for the episode termination). Given the partial
state-action-reward (sk, ak, rk)∀k ∈ ts, . . . , ts +N observation, the algorithm
computes, for each k:

1. Rk using V (sN+1) as bootstrap: Rk =
∑N
i=k γ

i−krk + γN−kV (sN+1);

2. The policy gradient ∆pg = ∆θπ log(π(sk, ak|θπ))(Rk − V (sk));

3. The V (s|θv) gradient ∆v = ∆θv (V (sk|θv)−Rk)2;

4. The entropy gradient ∆h = ∆θπ

∑N
i=0 log(π(si, ai|θπ))π(si, ai|θπ).

Subsequently, an optimization step is performed in the direction that max-
imizes both E[Rk] (direction ∆pg) and the entropy of π(sk) (direction ∆h), as
well as minimizes the mean squared error of V (sk) (direction −∆v). It is a multi-
objective optimization problem, which in the A2C algorithm has been solved
with a scalarization. There are three different objectives, with some common
parameters. Both the entropy and policy gradients share θπ.

2For simplicity Rt =
∑∞
i=0 rt+i is used in this example
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Also π(s) and V (s) often have some common parameters, because usually
a feature extraction is performed on the state s, and the features are used as
inputs for π(s) and V (s). Let us denote C(s|θC) : S ⇒ F the feature extraction
function, with θC its parameters, f = C(s|θC) the features. By substituting S
with in F in the π(s) and V (s) domains 3, then the computed gradients are:

∆pg = ∆θπ+θC log(π(fk, ak|θπ, θC))(Rk − V (fk)) (1)

∆v = ∆θv+θC (V (fk|θv, θC)−Rk)2 (2)

∆h = ∆θπ+θC

N∑
i=0

log(π(si, ai|θπ, θC))π(si, ai|θπ, θC) (3)

where ∆pg is the policy gradient, ∆v is the error gradient for the estimator net
V , and ∆h is a gradient of the entropy of the policy net. The notation ∆θπ+θC (·)
represents the gradient of the argument with respect to θπ and θC .

An optimization step is performed in the direction of the scalarized objec-
tive −∆pg + β∆v − α∆h, where α and β are coefficients introduced to weight
the strength of the entropy regularization term and of the ∆v gradient, respec-
tively. It is apparent that all the three objective functions share some param-
eters. Specifically, the gradient computed for the parameter θπ contains the
contributions of ∆pg and ∆h. Furthermore, the gradient for the parameter θC
contains the contributions of ∆pg, ∆v and ∆h.

A representation of the mutual dependency between gradients via related
parameters is given in Figure 2.

Each coloured box represents a different gradient contribution to the overall
loss related to: the policy π, the entropy h, and the total discounted cumulative
reward estimator V . Here, each big box represents a different Neural Network
(NN), whereas the inner small box represents its parameters (i.e. a connection
weights). In Figure, the input and output of each NN are also represented: C(s)
is fed by the state s to extract the features f , whereas both the policy NN π
and the estimator NN V take the features as an input, to provide the action
probability vector p and the future cumulative discounted reward estimate R̃,
respectively. In particular, each gradient is represented with a different color,
and a dashed colored arrow from the gradient to the inputs highlights the back-
ward path and thus the influence of a gradient to a parameter optimization. It is
apparent that the sub-objectives are not independent, since they have common
parameters. We call gradient overlapping this dependency among gradients.
As a consequence, the policy and value function parameters can be pushed to
sub-optimal regions.

3π(f) : F ⇒ A× (0, 1), π(f, a) : F ×A ⇒ (0, 1) and V (f) : F ⇒ R
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Figure 2: Backward computation in the A2C algorithm

Another issue that is considered in this research is the possibility that the
entropy regularization term could generate noise in the network parameters.
Indeed, it can be observed in Formula 3 that the gradient ∆h is not computed
to reach a target entropy level, but just for increasing it.

In the next section the two issues are tackled considering also their reciprocal
impact on the system performance.

3. The Proposed A2CNOG+TE algorithm

In this section a solution to avoid the gradient overlapping when using the
A2C scalarized objective function is proposed. It is worth noting that to solve
the gradient overlapping problem also allows to remove the weights coefficients
of the scalarized objective function, thus reducing the hyperparameters search
space, and then the optimization time. In the following, this approach will
be referred to as the Non-Overlapping Gradient (NOG). Furthermore, an idea
to solve the noise generated by the entropy regularization term is discussed.
The idea is to maintain the entropy of the policy π(f) above a target level
without using any gradient. In the following, this approach will be referred to
as the Target Entropy (TE). As an effect, this can further reduce the gradient
overlapping phenomenon.

3.1. Non-Overlapping-Gradients (NOG)

The NOG technique consists in simplifying the backward computation flow
represented in Fig. 2, to remove the gradient overlapping on the feature ex-
traction function C(s), and to constrain the computation to the semantically
appropriate functions. Specifically, the only gradient contributing to the feature
extraction function C(f) optimization is ∆pg. Similarly, the gradient ∆h should
contribute just to the policy function π(f) optimization, as well as the gradient
∆v should contribute just to the value function V (f) optimization. According
to such criterion, the new computed gradients are the following:
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∆pg = ∆θπ+θC log(π(fk, ak|θπ, θC))(Rk − V (fk)) (4)

∆v = ∆θv (V (fk|θv)−Rk)2 (5)

∆h = ∆θπ

N∑
i=0

log(π(si, ai|θπ))π(si, ai|θπ) (6)

where, with respect to Formulas 1, 2, 3, ∆v and ∆h are computed respectively
against θv and θπ only.

This way, the gradient overlapping is sensibly reduced, but not totally dis-
appeared. Specifically in this scenario the gradients ∆pg and ∆h still overlap
via the parameters of the policy function θπ. A visual representation of the
new gradient computation is given in Figure 3, where a colored cross represents
where the backward computation of the related gradient component stops.

Figure 3: Backward computation in the A2CNOG algorithm

Using the Non Overlapping Gradients technique the new scalarized objective
function is −∆pg+∆v−α∆h. Note that the parameter β is not needed because
∆v is totally independent.

3.2. Target Entropy (TE)

In the previous section, it has been highlighted that the gradient ∆h is
not computed to reach a target entropy level but just for increasing it. This
can produce noise in the network parameters. In this section we propose a
novel technique to maintain the entropy of the policy π(f) above a target level
without using any gradient. As a consequence, the gradient overlapping can be
completely removed when using the TE technique in conjunction with NOG.

Let us denote pa = π(f, a) the probabilities of each action a ∈ A given the
features f = C(s) of the state s ∈ S, and pmax the highest probability. Let us
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observe that
∑N
i pi = 1. Let us define p̃ as:

p̃i =

{
pi − ε i = max

pi + ε
N−1 i 6= max

(7)

The property
∑N
i p̃i = 1 is maintained 4, i.e., p̃ is still a valid categorical

distribution. It is also important to notice that H(p̃) < H(p).

Let us recall the definition of entropy H(x) = −
∑N
i log(xi)xi, and let us

focus on just one of the entropy components log(x)x. It can be easily compute
the difference of one contribution in function of ε ∆h(x, ε) = log(x)x− log(x+
ε)(x+ ε). Considering the overall entropy difference ∆H(p, ε) = H(p)−H(p̃|ε),
it can be written in function of ∆h(p, ε) contributions, as follows:

∆H(p, ε) =

N∑
i

log(pi)pi −
N∑
i

log(p̃i)p̃i

∆H(p, ε) =log(p0)p0 + · · ·+ log(pn)pn+

− (log(p0 +
ε

N − 1
)(p0 +

ε

N − 1
) + · · ·

+ log(pn−1 +
ε

N − 1
)(pn−1 +

ε

N − 1
) + log(pmax − ε)(pmax − ε))

Rearranging the terms, ∆H(p, ε) can be rewritten as:

∆H(p, ε) =(log(p0)p0 − log(p0 +
ε

N − 1
)(p0 +

ε

N − 1
))+

· · ·

+ (log(pn−1)pn−1 − log(pn−1 +
ε

N − 1
)(pn−1 +

ε

N − 1
))

+ log(pmax − ε)(pmax − ε)

Expressing it in function of ∆h:

∆H(p, ε) =∆h(p0,
ε

N − 1
) + · · ·+ ∆h(pn−1,

ε

N − 1
) + ∆h(pmax,−ε)

Let us assume that ε is small and close to zero. The Taylor expansion of
∆h(p, ε) where ε = 0 can be computed as follows:

4
∑N
i p̃i =

∑
i6=max p̃i + pmax =

∑
i 6=max pi − (N − 1) ε

N−1
+ pmax − ε =

∑
i 6=max pi +

pmax − ε+ ε =
∑N
i pi = 1
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∂

∂ε
∆h(p, ε) =− (

1

p+ ε
(p+ ε) + log(p+ ε)) = −log(p+ ε)− 1

∆h(p, ε)|ε∼0 ≈ ∆h(p, 0) +
∂

∂ε
∆h(p, 0)ε

∆h(p, ε)|ε∼0 ≈ log(p)p− log(p)p+ (−log(p)− 1)ε ≈ −log(p)ε− ε
∆h(p, ε)|ε∼0 ≈ − ε(log(p) + 1)

Finally, by substituting back the approximation of ∆h(p, ε) in ∆H(p, ε), the
following approximation can be derived:

∆H(p, ε) = ∆h(p0,
ε

N − 1
) + · · ·+ ∆h(pn−1,

ε

N − 1
) + ∆h(pmax,−ε)

∆H(p, ε) ≈ − ε

N − 1
(log(p0) + 1) · · · − ε

N − 1
(log(pn−1) + 1) + ε(log(pmax) + 1)

∆H(p, ε) ≈ − ε

N − 1
(log(p0) + log(p1) + · · ·+ log(pn−1)− (N − 1)(log(pmax) + 1) + (N − 1))

∆H(p, ε) ≈ − ε

N − 1
(

n−1∑
i

pi − (N − 1)log(pmax)− (N − 1) + (N − 1))

∆H(p, ε) ≈ − ε(
∑n−1
i pi)

N − 1
− log(pmax))

∆H(p, ε) ≈ − ε(AV Gi 6=imax [pi]− log(pmax))

Using the above formula, ε can be computed as follows, in order to achieve
a desired entropy Th of p:

ε = − H(p)− Th
AV Gi 6=imax [pi]− log(pmax)

(8)

As a consequence, the action can be sampled from p̃|ε instead of p, i.e., to
sample the action from a categorical distribution with an entropy higher than
Th. It is worth to notice that the action from the p̃|ε distribution can still
be sampled using the ∆pg gradient computation represented in Figure 4. As a
result, the technique allows to keep a certain exploration over exploitation ratio,
and at the same time it avoids raising entropy.

Using the Target Entropy technique, the new scalarized objective function
is −∆pg + β∆v. It can be noted that there is no ∆h term. Figure 4 represents
the resulting backward computation. Here, the focus is on the NN π, whose
output p is now transformed using the Target Entropy according to 7 and 8.
The resulting p̃ is used to sample an action a. As a result, there is no more a
contribution to the gradient related to ∆h. Then, the scalarization coefficients
are not needed, because there are only two independent contributions to the
gradient.
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Figure 4: Backward computation in the A2CTE algorithm

In the next section, the advantages of the NOG and TE techniques are
experimentally evaluated.

4. Experimental Studies

In order to investigate the combined effect of the NOG and TE techniques,
two different algorithms have been experimented:

1. Classical A2C (A2C)

2. A2C with Non-Overlapping-Gradients and Target Entropy (A2CNOG+TE)

For each training algorithm, first a hyperparameters optimization has been
carried out. Subsequently, the best hyperparameters have been used to calculate
the confidence interval, over 10 runs, of the training time needed to solve the
problem.

To perform the experiments, three environments sufficiently complex to
solve, which allow the hyperparameters optimization in a reasonable time, have
been considered: EnergyMountainCar, CartPole and LunarLander, all from
OpenAI Gym [9].

4.1. Hyperparameters Optimization

Table 1 shows the hyperparameters to optimize, for the considered algo-
rithms. In order to sample the hyperparameters to use for each run, it has
been used the Tree-structured Parzen Estimator (TPE) [7], whereas to prune
unpromising runs it has been used the Successive Halve Pruning (SHP) [10].
More precisely every 1000 steps the current reward EMA (Exponential Moving
Average) is reported to the SHP pruner.

Each run has been evaluated for 100 episodes, and the mean reward has been
used as objective function (to maximize) for the hyperparameters optimization.
All hyperparameters optimization has been run on an Intel Xeon with 40 cores.
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Name Range Sampling Description

γ [0.9, 0.99, 0.999] Categorical Discount factor
N [8, 16, 32, 64] Categorical Env. steps for training step
lr (10−5, 10−2) LogUniform Learning rate

mcn (0, 2) Uniform Max gradient clip norm
α (10−4, 10−1) LogUniform ∆h strength
β (0, 1) Uniform ∆v strength
Th (0, 0.2) Uniform Target Entropy

Table 1: Hyperparameters to optimize.

It follows, for each environment, a brief description, the results of the hyperpa-
rameters optimization, and the performance evaluation for the two comparative
algorithms.

4.2. The EnergyMountainCar environment

In EnergyMountainCar a car drives up a hill which is steep with respect to
its engine. Since the car is positioned in a valley, the agent must learn to drive
back and forth to build up momentum. Figure 5 shows the environment and its
control variables.

Figure 5: The EnergyMountainCar environment

Specifically, the state space has 2 components: car’s horizontal position (x)
and horizontal speed (ẋ). Three different actions can be performed by the agent:
no action, accelerate (F ) to the left or to the right. The reward is computed as
the car’s total energy difference (potential and kinetic) of the last time step.

An episode finishes when the car reaches the top of the right hill. The goal
is to spend less energy as possible. The environment is considered solved by
achieving a cumulative reward of 0.45 points.

Figure 6 shows the objective value of the hyperparameters optimization pro-
cess, against the number of trials sampled, for the comparative algorithm. The
running best objective value is highlighted by a continuous line. In particular,
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it can be noted that the best objective value is immediately achieved by the
A2CNOG+TE, whereas it is achieved at the fifth iteration by the A2C.

(a) A2C

(b) A2CNOG+TE

Figure 6: EnergyMountainCar: objective value of the hyperparameters optimization process
over time, for the comparative algorithms. The solid line highlights the best values.

Figure 7 represents the hyperparameters values optimization and the related
objective value, for the two algorithms. Here, each line represents a trial, with
its hyperparameters values represented on the vertical axes. According to the
colorbar, the blue level of the line allows to distinguish the best solutions. Here,
it can be observed that the hyperparameters values corresponding to the highest
objective values are more scattered for the A2C.

12



(a) A2C

(b) A2CNOG+TE

Figure 7: EnergyMountainCar: hyperparameters values optimization and related objective
value, for the comparative algorithms.

For the sake of completeness, Table 2 shows the best hyperparameters value
for each considered algorithm.

parameter A2C A2CNOG+TE

γ 0.999 0.999
N 16 64
lr 0.0007139 0.00003798

max-clip-norm 1.419 0.2302
α 0.0003160
β 0.1833
Th 0.0739

Table 2: EnergyMountainCar: best hyperparameters found for each algorithm.
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After setting the best hyperparameters for each algorithm, the training pro-
cess has been carried out 10 times for both algorithms.

Figure 8 shows the episode reward versus the training step for each algo-
rithm, with its 95% confidence interval. Precisely, the steps to solve the prob-
lem via the proposed A2CNOG+TE algorithm and via the classical A2C are
2511± 378 and 2702± 433, respectively. The proposed approach improves the
time efficiency of the A2C, up to more than 1.08x of average speedup.

Figure 8: EnergyMountainCar: reward versus training step, for each algorithm.

4.3. The CartPole environment

CartPole, also known as inverted pendulum, is a pendulum with the center
of mass above its pivot point. Figure 9 shows the environment and its control
variables. The pivot point is an axis of rotation mounted on a cart, limiting the
pendulum to one degree of freedom, along which the cart can move horizontally.
Any displacement from the vertical position causes a gravitation torque and a
consequent fall, if not balanced by the cart movement. The agent controls the
cart in order to prevent the pendulum from falling, by applying a force F of ±1.
The state space is represented by 4 components: cart position (x), cart velocity
(ẋ), pole angle (Θ), and pole tip angular velocity (Θ̇). The action space is
two-dimensional: moving left or right. A reward of +1 is provided for every
timestep with the pole upright. An episode ends when the pole is more than 15
degrees from vertical, or when the cart moves more than 2.4 units from the start.
The goal is to keep the pole upright as much as possible. The environment is
considered solved by achieving a cumulative reward of 195 points.
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Figure 9: The CartPole environment

Figure 10 shows the objective value of the hyperparameters optimization pro-
cess, against the number of trials sampled, for the comparative algorithm. It is
worth noting that, there is a lower number of trials in the hyperparameters op-
timization of A2C. Specifically, during the optimization, there are unpromising
trials which are aborted during the training process by the pruning algorithm.
The figures clearly show that the A2C has been more affected by pruning with
respect to the A2CNOG+TE.
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(a) A2C

(b) A2CNOG+TE

Figure 10: CartPole: objective value of the hyperparameters optimization process over time,
for the comparative algorithms. The solid line highlights the best values.

Figure 11 represents the hyperparameters values optimization and the re-
lated objective value, for the two algorithms. Here, each line represents a trial,
with each hyperparameter value represented on the vertical axes. According to
the colorbar, the blue level of the line allows to distinguish the best solutions.
Here, it can be observed that for some hyperparameters values there is a higher
density of good trials.
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(a) A2C

(b) A2CNOG+TE

Figure 11: CartPole: hyperparameters values optimization and related objective value, for
the comparative algorithms.

For the sake of completeness, Table 3 shows the best hyperparameters value
for both algorithms.

parameter A2C A2CNOG+TE

γ 0.99 0.99
N 64 64
lr 0.0009591 0.001642

max-clip-norm 0.3898 1.3569
α 0.0006986
β 0.5996
Th 0.166

Table 3: CartPole: best hyperparameters found for each algorithm.
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After setting the best hyperparameters for each algorithm, the training pro-
cess has been carried out 10 times for each algorithm.

Figure 12 shows the episode reward versus the training step for each algo-
rithm, with its 95% confidence interval. Precisely, the steps to solve the problem
via the proposed A2CNOG+TE algorithm and via the classical A2C are 848±197
and 999± 108, respectively. The proposed approach sensibly improves the time
efficiency of the A2C, up to more than 1.18x of average speedup.

Figure 12: CartPole: reward versus training step, for each algorithm.

4.4. The LunarLander environment

LunarLander is a control task, in which the agent controls the landing of
a spacecraft. The spacecraft is initialized at the top of the environment, with
a random velocity and angular momentum. Figure 13 shows the environment
and its control variables.
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Figure 13: The LunarLander environment

Specifically, the state space has 8 components: horizontal position and veloc-
ity (x, ẋ), vertical position and velocity (y, ẏ), angle (Θ) and angular momentum
(Θ̇), right and left leg state (that is, leg ground contact). Four different actions
can be performed by the agent: no action, fire left engine (Fl), fire right engine
(Fr) and fire main engine (Fc). The spacecraft has infinite fuel. The reward is
computed as follows: -0.3 points for each frame with the main engine on, +100
points for a successful landing, -100 points for crashing, +10 points for each leg
making contact with the ground, and a value ranging from 100 to 140 evaluating
the spacecraft trajectory to the pad. An episode finishes when the spacecraft
lands or crashes. The goal is to land the spacecraft using as less fuel as possible.
The environment is considered solved by achieving a cumulative reward of 200
points.

Figure 14 shows the objective value of the hyperparameters optimization
process, against the number of trials sampled, for the comparative algorithm.
It is worth noting that, actually, good hyperparameters can be found after just
20 trials. It is worth noting that, there is a lower number of trials in the
hyperparameters optimization of A2C. Specifically, during the optimization,
there are unpromising trials which are aborted during the training process by
the pruning algorithm. The figures clearly show that the A2C has been more
affected by pruning with respect to the A2CNOG+TE.
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(a) A2C

(b) A2CNOG+TE

Figure 14: LunarLander: objective value of the hyperparameters optimization process over
time, for the comparative algorithms. The solid line highlights the best values.

Figure 15 represents the hyperparameters values optimization and the re-
lated objective value, for the two algorithms. Here, each line represents a trial,
with its hyperparameters values represented on the vertical axes. According to
the colorbar, the blue level of the line allows to distinguish the best solutions.
In particular, in Figure 15b it can be observed that for some hyperparameters
values there is a higher density of good trials.
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(a) A2C

(b) A2CNOG+TE

Figure 15: LunarLander: hyperparameters values optimization and related objective value,
for the comparative algorithms.

Table 4 shows the best hyperparameters value for each considered algorithm.
After setting the best hyperparameters for each algorithm, the training pro-

cess has been carried out 10 times for each algorithm.
Figure 16 shows the episode reward versus the training step for each algo-

rithm, with its 95% confidence interval. Precisely, the steps to solve the problem
via the proposed A2CNOG+TE algorithm and via the classical A2C are 2045±446
and 6265± 2615, respectively. It is apparent that the proposed approach sensi-
bly improves the time efficiency of the A2C, up to more than 3.06x of average
speedup.
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parameter A2C A2CNOG+TE

γ 0.999 0.999
N 64 64
lr 0.0002473 0.0002292

max-clip-norm 0.3668 0.3462
α 0.0003978
β 0.4832
Th 0.0917

Table 4: LunarLander: best hyperparameters found for each algorithm.

Figure 16: LunarLander: reward versus training step, for both algorithms.
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4.5. Results summary

Table 5 summarizes the 95% confidence intervals of the training steps needed
to solve the three considered environments, via A2C and A2CNOG+TE, and the
speedups with respect to A2C. The effectiveness of the proposed A2CNOG+TE

is apparent for increasing environment complexity (i.e., state space size).

Environment
State space

size
A2C A2CNOG+TE

Average
Speedup

EnergyMountainCar 2 2702± 433 2511± 378 1.08x
CartPole 4 999± 108 848± 197 1.18x

LunarLander 8 6265± 2615 2045± 446 3.06x

Table 5: Confidence intervals of the steps to solve some benchmark environments, via A2C
and A2CNOG+TE algorithms.

The A2CNOG+TE algorithm has been developed, tested and publicly released
on the Github platform [11], to foster its application on various research envi-
ronments.

5. Conclusions

In the Advantage Actor Critic (A2C) algorithm, two issues of the scalariza-
tion of the multi-objective optimization problem are discussed and addressed.
Specifically, an approach to avoid gradient overlapping (NOG) and to control
the entropy (TE) of the action distribution is formally designed. The proposed
variant, called A2CNOG+TE, and the classical A2C, are experimented, after per-
forming the hyperparameters optimization.

The proposed techniques are designed to be used on all the reinforcement
learning algorithms derived from A2C that share the same loss function com-
ponents. Although the preliminary experiments look promising, more research
is needed to both investigate the performance improvements on different envi-
ronments and on different Advantage based algorithms.
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